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Abstract

Complex interactions between brain regions and the spinal cord (SC) govern body motion,

which is ultimately driven by muscle activation. Motor planning or learning are mainly con-

ducted at higher brain regions, whilst the SC acts as a brain-muscle gateway and as a motor

control centre providing fast reflexes and muscle activity regulation. Thus, higher brain

areas need to cope with the SC as an inherent and evolutionary older part of the body

dynamics. Here, we address the question of how SC dynamics affects motor learning within

the cerebellum; in particular, does the SC facilitate cerebellar motor learning or constitute a

biological constraint? We provide an exploratory framework by integrating biologically plau-

sible cerebellar and SC computational models in a musculoskeletal upper limb control loop.

The cerebellar model, equipped with the main form of cerebellar plasticity, provides motor

adaptation; whilst the SC model implements stretch reflex and reciprocal inhibition between

antagonist muscles. The resulting spino-cerebellar model is tested performing a set of

upper limb motor tasks, including external perturbation studies. A cerebellar model, lacking

the implemented SC model and directly controlling the simulated muscles, was also tested

in the same. The performances of the spino-cerebellar and cerebellar models were then

compared, thus allowing directly addressing the SC influence on cerebellar motor adapta-

tion and learning, and on handling external motor perturbations. Performance was assessed

in both joint and muscle space, and compared with kinematic and EMG recordings from

healthy participants. The differences in cerebellar synaptic adaptation between both models

were also studied. We conclude that the SC facilitates cerebellar motor learning; when the

SC circuits are in the loop, faster convergence in motor learning is achieved with simpler cer-

ebellar synaptic weight distributions. The SC is also found to improve robustness against

external perturbations, by better reproducing and modulating muscle cocontraction

patterns.
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Summary

Accurate motor control emerges from complex interactions between different brain areas,

the spinal cord (SC), and the musculoskeletal system. These different actors contribute

with distributed, integrative and complementary roles yet to be fully elucidated. To further

study and hypothesise about such interactions, neuromechanical modelling and computa-

tional simulation constitute powerful tools. Here, we focus on the SC influence on motor

learning in the cerebellum, an issue that has drawn little attention so far; does the SC facil-

itate or hinder cerebellar motor learning? To address this question, we integrate biologi-

cally plausible computational models of the cerebellum and SC, equipped with motor

learning capability and fast reflex responses respectively. The resulting spino-cerebellar

model is used to control a simulated musculoskeletal upper limb performing a set of

motor tasks involving two degrees of freedom. Moreover, we use kinematic and EMG

recordings from healthy participants to validate the model performance. The SC fast con-

trol primitives operating in muscle space are shown to facilitate cerebellar motor learning,

both in terms of kinematics and synaptic adaptation. This, to the best of our knowledge, is

the first time to be shown. The SC also modulates muscle cocontraction, improving the

robustness against external motor perturbations.

1 Introduction

Accurate motor control enables interactions with the environment and others, a process in

which sensory information is integrated by the central nervous system (CNS) and translated

into muscle activity, eventually driving body motion. Body motion results from the interaction

between the musculoskeletal system and diverse neural regions with distributed, integrative

and complementary roles [1]. In the brain, various neural regions project descending motor

control signals to the spinal cord (SC); e.g., the motor cortex, involved in the volitional control

of motion [2]; the basal ganglia, involved in selecting motor behaviour and balance control [3,

4]; the cerebellum, involved in motor coordination and learning [5]. The SC circuits integrate

those motor descending signals to regulate motoneuron activity, ultimately driving muscle

activation. Besides, the SC also implements its own motor control mechanisms; e.g., fast

reflexes, control of rhythmic locomotion movements, or responses against perturbations [5].

Motor control within the CNS could be synthesised as a hierarchical process; higher brain

areas govern motor functions such as planning or learning, and the SC then integrates their

descending control signals, provides faster and lower-level control mechanisms, and ultimately

drives muscle activity. To comprehend and hypothesise about this hierarchical interaction,

neuromechanical modelling and computational simulation represent powerful tools, provid-

ing a holistic view conjugating from neuron to neural network to motor behaviour levels [6].

To that aim, we present a hierarchical structure comprising: a cerebellar model, a higher brain

area equipped with motor learning and adaptation; an SC model, integrating the cerebellar

descending control signals and implementing fast-reflexes and muscle activity regulation, and

finally actuating a musculoskeletal upper limb model. This spino-cerebellar integration thus

provides a computational exploratory framework, which was further complemented with kine-

matic and EMG data validation. Both the cerebellum and SC main physiological mechanisms

have been previously described, however, little attention has been put on the SC influence on

cerebellar motor control. Spinal circuits are evolutionary old, they were present in the first ver-

tebrates emerged about 500 million years ago [7] and fully allowed basic locomotion [8]. As

new higher neural areas evolved to handle more complex motor control, they had to coexist
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and interact with the old lower spinal circuits. It is not clear whether that interaction facilitates

motor control or implies a constraint with which higher neural regions have to live with. On

the one hand, the SC benefits motor control providing fast feedback loops, lower dimensional-

ity for planning and control, and motor primitives (i.e., low level motor building blocks). On

the other hand, higher brain areas have to deal with the highly non-uniform control space and

hidden states in the SC, and the need for inverse models that cover not only the body dynamics

but also the SC dynamics. Here, we study whether the SC facilitates cerebellar motor learning,

or it is simply an evolutionary constraint to be handled.

The cerebellum is key in motor control and coordination, and most importantly motor

learning [9]. The Marr-Albus-Ito theory on cerebellar function [10] established the computa-

tional principles for supervised cerebellar learning [11], by which the cerebellum enables the

adaptation of our actions so their consequences match up to our expectations, i.e., minimising

the difference between our intention and the actual movement [12]. This motor learning capa-

bility stands upon the plasticity exhibited at the synapses from parallel fibres (PF), i.e., axons of

granule cells (GC), to Purkinje cells (PC); plasticity regulated by the action of climbing fibres

(CF) reaching PCs [13]. The Marr-Albus-Ito theory assumes the GCs carry a recoding of the

sensory inputs conveyed through mossy fibres (MF) [14], whereas CFs carry an instructive sig-

nal coding the disparity between our motor expectation and the actual motor state. Despite the

well-accepted common ground on the cerebellum established by the Marr-Albus-Ito theory,

new findings keep refining the understanding about cerebellar structure and operation, for

which computational models are key contributors [15]. Computational models of the cerebel-

lum have been used to study its inner dynamics [16, 17], proving the cerebellar motor learning

ability and its capacity to adapt to dynamic changes [18–21]. However, the extensive efforts

devoted to cerebellar computational research usually model the cerebellum in isolation. In this

work, we build upon and expand previous cerebellar research to include the SC, as theories on

the CNS motor function cannot ignore spinal circuitry [22].

Lower down in the CNS hierarchy, the SC transmits control signals from brain motor areas

to the muscles, and it also conveys sensory signals from muscle receptors back to the brain.

But its role in motor control goes beyond a mere gateway between the brain and muscles [23–

25]. The SC contains neural pathways that regulate muscle activity, control reflex responses

and produce rhythmic locomotion movements. These spinal pathways channel the sensory

feedback mainly from stretch sensitive muscle spindles and tension sensitive Golgi tendon

organs (GTO). This sensory feedback is then transmitted to motoneurons through afferent

fibres and spinal interneurons, allowing reflex responses and muscle regulation mechanisms:

e.g., stretch velocity reflex, static stretch reflex, Golgi tendon reflex, or reciprocal inhibition

between antagonist muscles [5]. Besides, these spinal pathways are modulated by higher brain

areas during movement execution such as between the stance and swing phases during gait

[26, 27], or during arm movements [25, 28, 29], thus highlighting the importance of the inter-

action between the SC and higher brain areas.

Computational models have been used to gain deeper insight on the SC role in motor con-

trol; e.g., control of centre-out reaching movements [22]; control of biceps stretch reflex [30];

reflex modulation via feedback gains [31]; rejection of dynamic perturbations, highlighting the

latency hierarchy levels of feedback [32], or the contribution of GTO feedbacks [33]. However,

these approaches lacked complex descending signals from higher brain areas, usually applying

open-loop supraspinal modules, hence hindering their use to study the interaction between

the SC and higher neural regions; larger scale models are required.

Little work has been done on large scale modelling to dig into the SC interaction with higher

CNS regions. A recent example coupled spinal circuits with sensory and motor cortex models,

forming a feedback control loop designed to reduce the difference between the desired and
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perceived state of a planar six-muscle arm [34]. The model showed motor control success and

reproduced some previous experimental phenomena, whilst it was suggested that the ataxic

nature of the produced movements could be due to the lack of a cerebellum model in the loop.

Regarding spino-cerebellar integration in particular, a few previous computational

approaches exist. Contreras-Vidal et al. modelled a cerebellum cooperating with an SC-based

muscular force model, together with a central pattern generator representing the motor cortex

and basal ganglia [35]. The cerebellar model, developed in analogue form and lacking the tem-

poral correlation nature of cerebellar learning, succeeded in learning muscle synergies, includ-

ing cocontraction of antagonist pairs, that improved upon the SC feedback control of tracking.

Different cerebellar lesions were studied, but the influence of the SC in cerebellar motor adap-

tation was sidestepped. Subsequently, Spoelstra et al. integrated a cerebellar model with an SC

model for postural control of a six-muscle two-dimensional arm model [36]. The study

assessed the predictive role of the cerebellum in accurate motor control, but again, the effect of

the SC in cerebellar learning was not addressed. More recently, Jo integrated a functional cere-

bellar model with spinal circuits equipped with plasticity but lacking reflex or other complex

spinal dynamics [37]. Results showed the effectiveness of the model to learn movements, with

synaptic plasticity at the SC helping to acquire muscle synergies. However, as stated by the

author, that learning capacity provided to the SC could be located anywhere in the corticosp-

inal pathway, hence loosening possible conclusions on the cerebellum-SC relation.

With the present work, we intend to extend the spino-cerebellar integration studies; we

addressed the questions of whether the SC facilitates cerebellar learning or it is just as an evolu-

tionary constraint, and how the SC contributes to handling motor perturbations. We modelled

a biologically plausible cerebellar spiking neural network (SNN), equipped with synaptic plas-

ticity at GC-PC connections guided by the instructive signal conveyed through CFs, thus, able

to provide motor adaptation. We added an SC model equipped with stretch reflex and recipro-

cal inhibition, integrating the descending signals from the cerebellum and sending muscle

excitation commands to the musculoskeletal upper limb model, equipped with two degrees of

freedom (DOF) actuated by eight Hill-based muscles. Both the cerebellar and SC model were

integrated in a negative feedback control loop. The study, developed using computational

tools and neuromechanical modelling, is also supported by lab recorded kinematics and EMG

data from healthy participants.

In the presented framework, the cerebellar model provides the motor adaptation required

for the musculoskeletal upper limb model to achieve a set of goal motor behaviours, i.e., differ-

ent upper limb movements are defined in joint space (position and velocity), and the cerebel-

lum acquires the inverse model allowing accurate position and velocity tracking. We suggest

the SC fast control primitives and regulation of muscle activity to be key in facilitating the cere-

bellar learning of the muscle dynamics; the SC allowed faster motor learning with simpler cere-

bellar synaptic adaptation. We also hypothesise that the SC plays a major motor control role

through cocontraction modulation; i.e., regulation of simultaneous activation of antagonist

muscles. Cocontraction has been shown to improve stability by increasing joint apparent stiff-

ness [38], enhance upper limb movement accuracy [39], and it has also appeared useful in

movements requiring robustness against perturbations [40]. We found that the stretch reflex

and reciprocal inhibition mechanisms participate in modulating cocontraction, with a signifi-

cant impact on cerebellar motor adaptation and response against external perturbations.

2 Results

We integrated the spinal cord and cerebellum models in an upper limb musculoskeletal feed-

back control loop (Fig 1A). The spino-cerebellar model commanded the upper limb to
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perform a set of motor tasks, a motor benchmark divided in two groups: i) lab recorded upper

limb movements performed by two healthy participants to study natural self-selected move-

ments, ii) lab designed upper limb movements with bell-shaped velocity profiles to study stan-

dard characteristic reaching movements. A cerebellar model lacking the SC integration

performed in the same motor benchmark (Fig 1B) thus providing a spino-cerebellar vs. cere-

bellar control framework that allowed contextualising the SC and cerebellum integration (see

Methods for a further description of the control loop and motor benchmark). Fig 1C displays

the musculoskeletal upper limb model.

The following sections present the validation of the spino-cerebellar model with the lab

recorded kinematics and EMG data; an evaluation of the SC effect in cerebellar motor adapta-

tion in joint, synaptic and muscle spaces; and testing the response against external motor

perturbations.

2.1 Spino-cerebellar and cerebellar models perform the recorded

kinematics

We extracted kinematics and EMG data from two healthy participants (P1 and P2) performing

upper limb movements in the vertical plane involving the shoulder and elbow (see Methods).

The motor tasks performed by P1 and P2 can be grouped in: i) flexion-extension movements,

ii) hand-tracked circular trajectories. Both motor task groups were performed at different

Fig 1. Spino-cerebellar and cerebellar control loops. A) Spino-cerebellar model. The cerebellum received the following input sensory information: the

desired trajectory (joint position, Qd, and velocity, _Qd) coming from a trajectory generator, representing the motor cortex and other motor areas

performing motor planning and inverse kinematics; the actual upper limb state (joint position, Qa, and velocity, _Qa) received from the musculoskeletal

model; the instructive signal (�) obtained as the mismatch between the desired and actual joint state. The cerebellum then generated two output control

signals per joint (Mf and Me, for flexor and extensor muscles, respectively), which were processed at the spinal cord. The spinal cord also received the

muscle state (length, lm, and velocity, _lm) and generated the final muscle excitation signals (um) which actuated the musculoskeletal model. B) Cerebellar

model. Mf and Me were directly applied as muscle excitation signals commanded to the upper limb. For bi-articular muscles (biceps long and triceps

long), the resulting um was the mean of the control signal (Mf or Me) from both joints. C) Musculoskeletal model. The upper limb model adapted from

Saul et al., 2014 [41] comprised two joints, shoulder and elbow, which were actuated by eight muscles: deltoid anterior and biceps long as shoulder

flexors; deltoid posterior and triceps long as shoulder extensors; biceps long, short and brachialis as elbow flexors; triceps long, lateral and medial as

elbow extensors. The images are extracted from OpenSim open source software (Seth et al., 2018 [42]).

https://doi.org/10.1371/journal.pcbi.1011008.g001
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speeds, thus providing a set of natural upper limb trajectories which constituted our initial

motor control benchmark. We used the joint kinematics (i.e., shoulder and elbow position,

Qd, and velocity, _Qd) extracted from the recording sessions as the desired trajectory to be learnt

by the spino-cerebellar (Fig 1A) and cerebellar (Fig 1B) models in the simulation framework.

Both models performed 3 repetitions of the motor adaptation process for each desired trajec-

tory, each repetition consisting of 2000 consecutive trials, a trial-and-error process that

allowed motor adaptation to fully deploy from scratch. The performance metric was given by

the position and velocity mean absolute error (MAE), i.e., difference between the desired and

actual trajectory in joint space, allowing to assess motor behaviour (see Methods).

We first calculated the position and velocity MAE evolution for both the spino-cerebellar

and cerebellar models performing the trajectories extracted from each participant (Fig 2A,

P1’s 1.8s circle trajectory; Fig 2B, P2’s 1.2s flexion-extension); see Supporting Information for

all P1 and P2 motor tasks MAE evolution (S1(A)–S9(A) Figs). As the trajectory was repeated

over time, the cerebellar adaptation allowed position and velocity error reduction. At the end

of the motor adaptation process, both the spino-cerebellar and cerebellar models followed the

target kinematics (Fig 2A and 2B); see Supporting Information for all P1 and P2 motor tasks

kinematics performance (S1(B)–S9(B) and S1(C)–S9(C) Figs).

We found that, attending to the MAE mean and standard deviation (std) of the last 200 tri-

als of the motor adaptation process (Fig 2C and 2D), the spino-cerebellar model reached better

performance in terms of position tracking for all trajectories except for P1’s slow (2.3s) and

moderate (1.8s) flexion-extension (average position MAE for all motor tasks was 0.026 ± 0.011

rad for the spino-cerebellar model, and 0.037 ± 0.024 rad for the cerebellar model). Conversely,

the cerebellar model reached better performance in terms of velocity tracking except for P1’s

slow (1.8s) circle and P2’s moderate (1.6s) and fast (1.2s) circle (average velocity MAE for all

motor tasks was 0.28 ± 0.07 rad/s for the spino-cerebellar model, and 0.26 ± 0.09 rad for the

cerebellar model).

2.2 The spinal cord improves cerebellar learning convergence and speed

Once we revealed the adaptation capability of both the spino-cerebellar and cerebellar models,

we studied the influence of the SC model on cerebellar learning over the adaptation process.

Using the position and velocity MAE evolution of each P1 and P2 trajectory, we compared the

spino-cerebellar and cerebellar models learning convergence and learning speed. To study

learning convergence we applied control charts on the MAE data to determine the number of

trials required to achieve a stable performance [43]. We computed the MAE mean (μ) and

standard deviation (σ) using a temporal sliding window with a sample size of 200 trials and

defined different MAE limits relating μ and σ (e.g., limit 1 = MAE 2[μ − σ, μ + σ]). We then

measured the percentage of trials with a MAE value within each limit (see Methods). To check

learning speed we analysed the number of trials required for the mean MAE of 200 samples to

reach a given target (i.e., 0.1 rad for position MAE, and 0.5 rad/s for velocity MAE). Learning

convergence and speed were tested on both position and velocity tracking performance (see

Fig 3A for an example of position and velocity MAE evolution and the metrics used, see Meth-

ods for a further description).

The SC was proven to facilitate cerebellar learning as it reduced learning convergence time

(Fig 3B), and increased learning speed (Fig 3C) for both position and velocity for both P1 and

P2 trajectories (Fig 3 left and right column, respectively). Thus, cerebellar motor adaptation

was shown to be: i) stabilised by the SC: average convergence time for MAEpos was 924 ± 423

trials for the spino-cerebellar model, and 1625 ± 526 trials for the cerebellar model; and for

MAEvel1015± 509 trials, and 1332 ± 571 trials, respectively; ii) accelerated by the SC: average
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Fig 2. Spino-cerebellar and cerebellar models kinematic performance for the lab recorded scenario. A) Position and velocity mean absolute error

(MAE) over the 3 repetitions of the 2000-trial motor adaptation process; and joint kinematics of the 3 repetitions last 200 trials (mean and standard

deviation) for both the spino-cerebellar and cerebellar models performing P1’s slow circle trajectory (1.8s), and B) P2’s fast flexion-extension (1.2s). C)

Mean and standard deviation of the position and velocity MAE (last 200 trials of the 3 trajectory repetitions) for all P1 recorded trajectories, and D) for

all P2 recorded trajectories.

https://doi.org/10.1371/journal.pcbi.1011008.g002
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learning speed for position was 3.2e−3 ± 1.0e−3 trials−1 for the spino-cerebellar model, and

2.1e−3 ± 1.3e−3 trials−1 for the cerebellar model; and for velocity 2.7e−3 ± 1.1e−3 trials−1, and

2.0e−3 ± 1.3e−3 trials−1, respectively.

2.3 The spinal cord simplifies cerebellar synaptic adaptation at GC-PC

Consistently with the Marr-Albus-Ito cerebellar theory, learning in the cerebellum was pro-

vided by means of an STDP mechanism adjusting the synaptic weights at GC to PC synapses

(a connection established through PFs, i.e., GC axons). The effect of the SC on cerebellar learn-

ing, already checked in terms of motor performance in the previous section, must leave its

trace at the level of cerebellar synaptic adaptation. To conduct a direct comparison between

the synaptic adaptation of the spino-cerebellar and cerebellar models, it is necessary to estab-

lish a common synaptic foundation. Thus, in one of the three repetitions of the 2000-trial

motor adaptation process for each motor task, the synaptic weights between GCs and PCs

were homogeneously initialised; i.e., at trial 0 all GC-PC synapses in both the spino-cerebellar

and cerebellar models started with the same synaptic weight (4.8 nS). This homogeneously-

initialised, 2000-trial repetition for the different P1 and P2 motor tasks, served as our

Fig 3. Spino-cerebellar and cerebellar models motor adaptation for all P1 and P2 recorded trajectories. A) Position MAE for the spino-cerebellar

and cerebellar models for P1 slow circle (left column), and velocity MAE for both models performing P2 fast flexion-extension (right column). Both

MAE plots show the trials at which the learning convergence and learning speed metrics are fulfilled. Only one repetition of the motor adaptation

process is displayed. B) Learning convergence for both models and all trajectories from P1 (left column) and P2 (right column). The bar plots display

the number of trials required by each model to fulfill the learning convergence criteria (see Methods). C) Learning speed for both models and all

trajectories from P1 (left column) and P2 (right column). The bar plots depict the inverse of the number of trials required to reach a position MAE of

0.1 rad and a velocity MAE of 0.5 rad/s.

https://doi.org/10.1371/journal.pcbi.1011008.g003
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benchmark for synaptic adaptation. The common starting point concerning the synaptic

weight distribution allowed for a fair comparison of the synaptic evolution between the two

models.

During the motor adaptation process of both the spino-cerebellar and cerebellar models,

we recorded the synaptic weight evolution at GC-PC connections every 200 trials for all P1

and P2 trajectories (Fig 4A and 4B). We then measured the entropy of the GC-PC synaptic

weight distributions to quantify the synaptic complexity of both models: the higher the

entropy, the more complex the synaptic weight distribution, i.e., higher heterogeneity of syn-

aptic weights at the GC-PC population. The synaptic entropy metric can be grasped as measur-

ing the complexity of the synaptic patterns displayed in Fig 4A and 4B, and the rest of the

patterns recorded every 200 trials describing the full motor adaptation process. Contrasting

the synaptic entropy of both models allowed evaluating the effect of the SC on cerebellar syn-

aptic adaptation (Fig 4C and 4D). Noteworthy, results showed that for all motor tasks the SC

reduced the entropy of the synaptic weight distribution: the mean entropy over all P1 and P2

trajectories was 3.65 ± 0.78 for the spino-cerebellar model, and 4.41 ± 1.14 for the cerebellar

model. When the SC was lacking in the control loop, more complex synaptic patterns (i.e.,

higher specialisation) were required at cerebellar GC-PC connections. The spino-cerebellar

model showed a simpler distribution of synaptic weights at GC-PC connections; in other

words, the spinal cord was therefore shown to simplify learning in the cerebellum.

To deepen in the finding of the SC simplification of the cerebellar synaptic solutions, we

analysed the amount of GC neurons required by the spino-cerebellar and cerebellar models.

We measured the percentage of GC-PC synapses that experienced a modification of their ini-

tial weight as motor adaptation progressed, thus providing a measurement of how many

GC-PC connections were effectively involved in motor learning (Fig 4E and 4F). Results

showed that the spino-cerebellar model made use of fewer GC-PC connections for all P1 and

P2 motor tasks. Thus, the SC allowed for a reduction of the GC neurons required for accurate

execution of the motor tasks. The common synaptic starting point together with the synaptic

entropy evolution and the amount of neurons involved in the motor adaptation process, sup-

port the divergence in the synaptic solutions acquired by the spino-cerebellar and cerebellar

models, and the SC influence in facilitating cerebellar learning at the synaptic level.

2.4 Spino-cerebellar and cerebellar outcome in muscle space

We then evaluated the outcome in muscle space of both the spino-cerebellar and cerebellar

models. We compared the recorded EMG envelopes to the main activated muscles from the

spino-cerebellar and cerebellar models during performance of P1 and P2 trajectories. Fig 5 dis-

plays all the participants’ recorded EMG signals and corresponding joint cocontraction index

(CCI). Fig 6A illustrates the deltoid posterior (DELTpost) and brachialis (BRA) muscles dur-

ing P1 slow circle performed by both the spino-cerebellar and cerebellar models, whilst deltoid

anterior (DELTant) and triceps lateral (TRIlat) muscles are depicted for P2 fast flexion-exten-

sion. Both models reproduced the main activation patterns of each muscle with a small shift

for P2 DELTant and TRIlat. The correlation between the spino-cerebellar or cerebellar activa-

tion and the EMG signals was generally larger than 0.5 (see Supporting Information (S13 and

S14 Figs)). The correlation was, however, larger for the spino-cerebellar model for most of the

muscles and scenarios. Nevertheless, the correlation averaged over muscles was similar

between the two models for all the movements and we could not conclude on a better muscle

pattern reproduction by one or the other model.

Results might not be conclusive when referred to a direct, muscle by muscle comparison

between our models performance and the recorded EMG; note that our musculoskeletal upper
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Fig 4. Spino-cerebellar and cerebellar synaptic adaptation. A), B) Synaptic weights at granule cell—Purkinje cell (GC-PC) synapses after 200 and

2000 trials, respectively, for both models performing P1’s 1.8s circle trajectory. The heat map represents the normalised GC-PC synaptic weights, which

could range from 0.0 to 15.0 nS. C), D) Evolution of the synaptic entropy at the GC-PC synapses over the 2000-trial motor adaptation process, for all P1

and P2 trajectories, respectively. The higher the entropy, the more complex the GC-PC synaptic distribution (i.e., higher heterogeneity in the synaptic

weights of the GC-PC synapses). E), F) Percentage of GC-PC synapses that experienced a modification of their initial weight as motor adaptation

progressed for all P1 and P2 trajectories; i.e., amount of GC-PC synapses required by both the spino-cerebellar and cerebellar models to succeed in the

motor adaptation process.

https://doi.org/10.1371/journal.pcbi.1011008.g004
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Fig 5. EMG recordings obtained from both P1 and P2 during flexion-extension and circular movements. A) EMG recordings obtained from P1

during flexion-extension movements and B) circular movements. The EMG signals of all recorded movements performed at different speeds are

interpolated and displayed together to highlight the main activation patterns. Muscles are grouped together by joint (left column for shoulder, right

column for elbow) and direction of motion (top row for flexor muscles, bottom row for extensor muscles). For simplicity, biarticular muscles (i.e.,

biceps long and triceps long) are only displayed on the shoulder group (left column). C), D) Resulting joint cocontraction index (CCI) from P1 during

flexion-extension and circular movements, respectively. E) EMG recordings obtained from P2 during flexion-extension movements and F) circular

movements. G), H) Resulting joint CCI from P2 during flexion-extension and circular movements, respectively.

https://doi.org/10.1371/journal.pcbi.1011008.g005
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Fig 6. Spino-cerebellar and cerebellar model performance in muscle space for all P1 and P2 recorded trajectories. A) Comparison of muscle

activation signals with recorded EMGs: the comparison only shows the main activated muscles during recordings of P1’s slow circle (two left columns)

and P2’s fast flexion-extension (two right columns). The plots show the muscle activity of the 200 trials reaching the learning convergence metric, as

well as their mean and standard deviation (std), for the two models performance. EMG signals are scaled by the maximum of the activation signals for

each muscle for the sake of representation. B) Joint cocontraction index (CCI) from EMG activity and both models performance, for the trajectories

represented in A). EMG CCI are scaled by the maximum of the models CCI for the sake of representation. C) Joint CCI evolution over the 2000-trial

motor adaptation process. D) Joint CCI values for both models and all P1 (two left columns) and P2 (two right columns) trajectories. E) Joint CCI

correlation between the models and EMG for all P1 (two left columns) and P2 (two right columns) trajectories. F) CCI-MAEvel relation: linear

regression between joint CCI and joint MAEvel over all the trajectories from P1 (two left columns) and P2 (two right columns).

https://doi.org/10.1371/journal.pcbi.1011008.g006
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limb model was actuated by eight muscles, a mere simplification of the complex muscle

dynamics of the human upper limb. To overcome this, we further studied performance in

muscle space using the joint cocontraction index (CCI), which unifies muscle activity per joint

and provides a more comprehensive analysis (refer to the Methods section for details on the

CCI computation procedure).

Both the spino-cerebellar and cerebellar model exhibited a gradual decrease in joint CCI as

motor adaptation evolved (see S15 fig for CCI evolution). Due to computational constraints,

each trajectory repetition was limited to 2000 trials, at the end of which CCI still showed a

decreasing trend. The spino-cerebellar model displayed higher CCI values than the cerebellar

model in some cases, whilst lower CCI values in others. Consequently, we could not draw

definitive conclusions on the final CCI values. Instead, since we used convergence of the kine-

matic performance as our learning metric, we focused on the CCI values as the kinematic

adaptation progressed.

During the early stages of learning, the spino-cerebellar model exhibited higher overall CCI

values than the cerebellar model (see Table 1). Subsequently, we measured the joint CCI once

an accurate internal model was developed, as indicated by a stable kinematic performance (see

Methods for details on learning convergence metrics). We found that the spino-cerebellar

model better reproduced the CCI patterns at the level of the elbow for P1 slow circle and at the

level of the shoulder for P2 fast flexion-extension (Fig 6B). Significantly, the spino-cerebellar

model provided higher CCI values at the kinematic convergence point (Fig 6C) for all P1 and

P2 trajectories, both for the shoulder and elbow (Fig 6D). We then compared the CCI provided

by both models with the CCI from the recorded EMG (Fig 6E). The correlation was mainly

higher for the spino-cerebellar model. We observed a similar trend as that observed for

Table 1. Joint CCI mean and standard deviation values during the first 400 trials for each P1 and P2 trajectory, for both the spino-cerebellar and cerebellar model.

Trajectory Joint Spino-Cerebellar CCI Cerebellar CCI p-value <0.005

P1 flex-ext slow Shoulder 0.58 ± 0.12 0.52 ± 0.13 *
Elbow 0.75 ± 0.07 0.69 ± 0.10 *

P1 flex-ext mod Shoulder 0.56 ± 0.12 0.56 ± 0.12

Elbow 0.71 ± 0.08 0.70 ± 0.10 *
P1 flex-ext fast Shoulder 0.61 ± 0.10 0.60 ± 0.10

Elbow 0.72 ± 0.06 0.70 ± 0.08 *
P1 circle slow Shoulder 0.60 ± 0.09 0.60 ± 0.07

Elbow 0.82 ± 0.08 0.81 ± 0.09 *
P1 circle mod Shoulder 0.54 ± 0.09 0.59 ± 0.07 *

Elbow 0.78 ± 0.06 0.77 ± 0.06 *
P2 flex-ext slow Shoulder 0.69 ± 0.10 0.64 ± 0.07 *

Elbow 0.81 ± 0.07 0.78 ± 0.08 *
P2 flex-ext mod Shoulder 0.73 ± 0.09 0.66 ± 0.06 *

Elbow 0.83 ± 0.06 0.78 ± 0.07 *
P2 flex-ext fast Shoulder 0.76 ± 0.07 0.71 ± 0.05 *

Elbow 0.77 ± 0.07 0.72 ± 0.07 *
P2 circle slow Shoulder 0.68 ± 0.07 0.68 ± 0.05

Elbow 0.73 ± 0.07 0.73 ± 0.07

P2 circle mod Shoulder 0.78 ± 0.06 0.71 ± 0.05 *
Elbow 0.74 ± 0.09 0.70 ± 0.09 *

P2 circle fast Shoulder 0.86 ± 0.07 0.70 ± 0.04 *
Elbow 0.68 ± 0.08 0.65 ± 0.07 *

https://doi.org/10.1371/journal.pcbi.1011008.t001
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MAEvel, therefore, we performed a linear regression between the CCI and MAEvel for each

joint. The results (Fig 6F) highlighted a linear trend between these quantities for P1 elbow and

P2 shoulder and elbow (with a coefficient of determination of 0.94, 0.63 and 0.53 respectively),

whereas P1 shoulder presented a weaker relationship (with a coefficient of determination of

0.23).

Overall, we highlighted various findings that were consistent for various trajectories with

various initial and final positions and speeds. The spino-cerebellar model provided more stable

and faster learning with simpler cerebellar synaptic adaptation. Furthermore both models

exhibited a gradual reduction in cocontraction as learning progressed; however, the spino-cer-

ebellar model reached learning convergence with higher CCI values and better correlation to

the recorded EMG.

2.5 The spinal cord increases the robustness against motor perturbations

The experimental setup used in the previous sections for the subjects recording sessions did

not provide neural activity data, thus preventing any conclusions about the roles of the cerebel-

lum and SC in response to external perturbations. It was not possible to determine whether

the cerebellum or SC would be the main contributor to the subjects’ response to external per-

turbations. To circumvent this data limitation, we used our computational approach. By

including or removing the SC from the control loop we were able to investigate the SC influ-

ence in responding to perturbations. To study the response against external perturbations of

both the spino-cerebellar and cerebellar models, we used our lab designed benchmark: upper

limb flexion-extension movements with bell-shaped velocity profiles, characteristic of reaching

movements [44]. This kind of movement is usually used for addressing active-limb control

malfunctioning, as cerebellar patients usually display upper limb oscillatory tremors that result

in endpoint overshooting and undershooting when reaching a target [45].

Both models faced 2000 consecutive trials of the flexion-extension movement performed at

different speeds (3s, 2.3s, 1.5s); after motor adaptation, both models succeeded in performing

the target kinematics (see Supporting Information, S16 fig). Once both models adapted to per-

form the desired trajectories, we tested the contribution of the SC in handling motor perturba-

tions. For that, we induced a set of external forces: i.e., 50 N for 30 ms applied to the hand in

different directions and at different points along the flexion-extension movement, resulting in

kinematic deviation (Fig 7A). We then measured the MAE deviation from the ideal, no-pertur-

bation scenario (Fig 7B–7E). Each perturbation type was applied on 50 separate trajectory tri-

als to get an average response (see Methods). Besides, to gain a deeper understanding of the SC

involvement in handling perturbations, we individually assessed the influence of the stretch

reflex and reciprocal inhibition mechanisms. To that end, we applied the aforementioned set

of external perturbations to two additional cases: i) SC equipped with just stretch reflex (SR-

cerebellar model); ii) SC equipped with just reciprocal inhibition (RI-cerebellar model). In

order to focus on the contribution of the two SC mechanisms and conduct a direct comparison

between them, for the SR-cerebellar and RI-cerebellar cases, we set the cerebellar synaptic

weights to those developed by the spino-cerebellar model. More specifically, we equipped the

cerebellar network with the synaptic solution acquired by the cerebellum after motor adapta-

tion when the SC model was fully equipped, thus preventing the cerebellum from learning

how to compensate for the deficiencies induced by the lack of spinal mechanisms. The cerebel-

lar learning capability was disabled in all four cases to prevent adaptation to the perturbations.

Note that, in previous research, we studied the cerebellar ability to effectively handle external

perturbations during motor adaptation under changing task conditions [18, 20]. By disabling

the cerebellar learning capability, we could specifically focus on the SC contribution.
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Fig 7. Spino-cerebellar, SR-cerebellar, RI-cerebellar and cerebellar model responses to external motor perturbations during bell-shaped flexion-

extension trajectories. A) Kinematic performance of both the spino-cerebellar and cerebellar models under a forward perturbation at the flexed

position whilst performing the 2.3s flexion-extension trajectory. 50 trials are displayed. B) Position deviation (D �MAE) caused by all the perturbations

applied during the 2.3s flexion-extension trajectory for the four models. Mean D �MAE and standard deviation (std) of 50 trials are displayed. C) Mean

position D �MAE and std for all the perturbations applied to the flexion-extension trajectories performed at different speeds (3s, 2.3s, 1.5s). 50 perturbed

trials were used for each perturbation type. D) Velocity deviation (D �MAE) caused by all the perturbations applied during the 2.3s flexion-extension

trajectory for the four models. Mean D �MAE and std of 50 trials are displayed. E) Mean velocity D �MAE and standard deviation for all the perturbations

applied to the flexion-extension trajectories performed at different speeds (3s, 2.3s, 1.5s). 50 perturbed trials were used for each perturbation type. F)

Shoulder and elbow CCI values for the four models. Mean and std of 50 trials without perturbation are displayed.

https://doi.org/10.1371/journal.pcbi.1011008.g007
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The kinematic performance of both the full spino-cerebellar and cerebellar models under

one perturbation type, whilst performing the moderate flexion-extension movement (2.3s),

shows that the cerebellar model exhibits a larger kinematic deviation compared to the spino-

cerebellar model, particularly at the elbow level Fig 7A). When analysing the responses of the

four models (spino-cerebellar, cerebellar, SR-cerebellar, and RI-cerebellar) to the set of pertur-

bations applied during the moderate flexion-extension trajectory (Fig 7B and 7D), we found

that: i) the spino-cerebellar model exhibited significantly smaller Mean Absolute Error devia-

tion (ΔMAE) compared to the cerebellar model, both in terms of position and velocity, for the

majority of the applied perturbations; ii) the SR-cerebellar model exhibited smaller ΔMAE
compared to the RI-cerebellar model. Additionally, the SR-cerebellar and spino-cerebellar

models exhibited similar deviations for most of the perturbations. Similar results were

obtained for the slow and fast bell-shaped flexion-extension trajectories (please refer to Sup-

porting Information for the corresponding figure, S17 fig).

The kinematic performance analysis on the deviations of the four models in response to all

the applied perturbations during the different trajectories (Fig 7C and 7E), confirmed the simi-

lar behaviour of the spino-cerebellar and SR-cerebellar models. Both models exhibited supe-

rior performance and greater robustness compared to the cerebellar and RI-cerebellar models.

All these findings support the role of the SC in handling external motor perturbations, and

suggest that the stretch reflex component plays a dominant and more effective role in dealing

with perturbations, whilst the reciprocal inhibition mechanism is not as extensively involved.

Finally, we computed the joint CCI values of our four models (Fig 7F) during the three tra-

jectories without perturbations. This analysis aimed to determine whether the CCI could serve

as a biological marker to predict the performance against perturbations. The results showed

that the SR-cerebellar model exhibited the highest CCI values, followed by the spino-cerebellar

model, the RI-cerebellar model, and lastly the cerebellar model. This observation indicates a

correlation between higher CCI values and greater robustness against perturbations, as models

with higher CCI values exhibited smaller trajectory deviations. Based on these findings, we can

conclude that the presence of the spino-cerebellar pathway contributes to better handling

external motor perturbations, with the stretch reflex playing a prominent role, which leads to

increased cocontraction levels.

3 Discussion

The integration of biologically plausible computational models of neural regions allows study-

ing their interaction and complementarity. We presented a computational exploratory

approach integrating a cerebellar and an SC model, performing motor control of an upper

limb musculoskeletal model; a simulation framework complemented with kinematic and

EMG data validation. We contrasted the spino-cerebellar integrated model with a cerebellar

model, both performing in the same motor benchmark, which allowed us to extract some key

elements of the kinematic and muscle performance directly attributable to the presence of the

SC in the spino-cerebellar control loop. The SC was found to stabilise, accelerate, and facilitate

cerebellar motor adaptation and to improve the response against perturbations through stretch

reflexes and reciprocal inhibition. Rather than being an evolutionary constraint, the SC offers

motor control benefits.

Both the spino-cerebellar and cerebellar models succeeded in learning the musculoskeletal

dynamics to achieve the goal motor behaviour. Noteworthy, the presence of the SC provided

faster motor adaptation, thus assisting cerebellar learning, in line with previous findings on the

SC circuitry facilitating motor control of musculoskeletal dynamics [46]. In this regard, a sig-

nificant finding was the fact that the spino-cerebellar model revealed less complexity at the
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GC-PC synaptic weight distribution and it required fewer GC neurons for accurate execution

of the motor tasks: the SC led to the formation of less specialised GC-PC synapses, thus freeing

up computational resources within the cerebellum. The cerebellar granular layer can be com-

pared to a reservoir computing mechanism [47, 48], wherein the cerebellum increases the

dimensionality of the sensorimotor inputs that it receives. The ability of the SC to facilitate a

more efficient use of GC neurons (the most numerous neuron type in the mammalian brain

[49]) can be compared to increasing the number of units in reservoir computing. Increasing

the size of the reservoir enhances its computational power and expands its memory capacity

[50, 51]. A larger size increases the degrees of freedom of the reservoir response, allowing it to

capture more complex dynamics. A larger size also allows the reservoir to store greater

amounts of values. Thus, by facilitating a more efficient use of cerebellar resources, the SC

enables an increase in the computational capacity of the cerebellum, hence overcoming its

physical limitations. To the best of our knowledge, it is the first time that a computational

model highlights and weighs the influence of the SC in facilitating cerebellar learning.

Direct regulation of muscle activity by the SC has here been found to facilitate the cerebellar

acquisition of the upper limb inverse dynamics. Indeed, the body plant dynamics to be learnt

by higher brain areas, might be simplified by the SC taking over lower level and faster control

primitives, such as the SC potential role in gravity compensation [52, 53]. Thus, the SC perfor-

mance in muscle space may lighten other operations of the sensorimotor process, occurring at

a higher level such as the cerebellum’s contribution in compensating interaction torques in

joint space [54], or in shaping spatiotemporal muscle synergies rather than generating specific

complex muscle patterns [55]. High-order brain functions, such as learning generalisation,

have been pointed as key aspects that enable the brain to overcome its physical limitations [22,

56]. Here we highlight the interaction between different CNS regions as pivotal for enhancing

the brain computational capacity and overcoming its physical constraints.

There is biological evidence supporting higher cocontraction levels during the early stages

of learning, e.g., infants exhibit higher cocontraction during stepping motions compared to

adults, and cocontraction is subsequently reduced with practice [57]; in the case of the upper

limbs, higher cocontraction levels resulting in higher joint stiffness during learning and adap-

tation to new dynamics have been reported [58, 59]. These findings suggest that higher cocon-

traction levels during early learning stages enhance the learning rate and facilitate the

acquisition of internal models, which once acquired, enable a gradual reduction of cocontrac-

tion [60]. In our work, both the spino-cerebellar and the cerebellar model exhibited a gradual

decrease in cocontraction levels as the motor adaptation process evolved; thus, both models

displayed a biologically plausible behaviour in the broader context of reducing cocontraction

through learning. Importantly, the spino-cerebellar model exhibited an overall higher cocon-

traction level during early stages of learning, and it also provided higher joint CCI values at the

learning convergence point, i.e., when an accurate internal model of the upper limb was fully

acquired.

The SC stabilises the system at muscle level, increasing cocontraction through stretch

reflexes and coordinating the antagonist activation patterns through reciprocal inhibition.

Thus, the SC participates in modulating cocontraction, which plays an important role in

motor control and stability [38, 40], providing better accuracy despite its energy cost [39]. In

our framework, the spino-cerebellar model increased the joint CCI whilst the upper limb

internal model was being acquired; i.e., cocontraction was indeed mostly determined by the

SC motor action. Importantly, the CCI from the spino-cerebellar model also resulted in a bet-

ter correlation with the CCI patterns from the recorded EMG signals, thus supporting closer

biological plausibility than the cerebellar model; incorporating more detailed biological motor

control mechanisms into the model increases the level of physiological plausibility in the
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results [46]. The CCI increment was also revealed when inducing perturbations in the control

loop; the spino-cerebellar model provided a better response, reducing the kinematic deviation.

Further analysis of the SC mechanisms revealed the stretch reflex to provide better responses

to perturbations than the reciprocal inhibition mechanism (SR-cerebellar vs. RI-cerebellar

models), showing smaller kinematic deviation whilst also exhibiting higher joint CCI values.

Thus, the stretch reflex was found to be a dominant mechanism in the SC improvement of

kinematic performance under external perturbations, whilst the inhibitory action of the recip-

rocal inhibition was not as extensively involved. Muscle elasticity has been previously pointed

as a significant passive contributor in handling perturbations [61]. Within our framework, the

spino-cerebellar and cerebellar models, as well as the SR-cerebellar and RI-cerebellar models,

all used identical muscle models with the same mechanical properties. Consequently, the pas-

sive muscle contribution to handling perturbations remained equal in all cases. This direct

equivalence allowed us to focus on the contribution of the SC and attribute a pivotal role to the

SC through the stretch reflex in providing robustness against external perturbations, thus sup-

porting previous physiological and modelling research [24, 25, 32, 33].

The cocontraction increase carried by the SC involved a poorer velocity tracking. Indeed,

the spinal reflexes between antagonist muscles may induce oscillatory activation patterns and

thus alter the velocity performance. We did not observe, however, any trend in CCI values

related to movement speeds despite higher cocontraction values have been reported in slower

movements [40]. Due to the SC and cerebellar models conception, our implementation lacks

differentiation between the roles of the cerebellum and SC depending on movement speed.

Note however that it is expected a major role of the cerebellum in fast ballistic movements

which cannot rely on feedback availability [36, 62], and which do present lower cocontraction

levels [40].

Our model could be further improved by adding other cocontraction mechanisms to the

control loop. Clinical studies supported a potential role of the cerebellum and basal ganglia in

cocontraction mechanisms. In particular, patients with cerebellar ataxia showed excessive ago-

nist-antagonist coactivation [63] and cerebellar stimulation was shown to reduce coactivation

in patients with spasticity [64]. Thus, future development of the cerebellar model shall include

control of the cocontraction level. On the SC side other pathways could be included, in partic-

ular modulation mechanisms that are present during arm movements [25, 28, 29]. For

instance, presynaptic inhibition of Ia terminals at both activated and antagonist pathways is

slightly decreased at the onset of a voluntary contraction through descending signals. Thus,

the increased gain of the stretch reflex pathway ensures that activated motoneurons receive Ia

feedback support. The reciprocal Ia inhibition is also depressed during a voluntary contraction

at the corresponding muscle to prevent its inhibition by the stretch-induced Ia discharge from

its antagonist. During cocontraction, reciprocal Ia inhibition is also depressed by increased

presynaptic inhibition on Ia terminals [5]. Also synaptic plasticity could be included in the SC

model, as done in previous computational approaches [34]. Activity dependent plasticity

mechanisms have been reported in the SC: e.g., the spinal stretch reflex can indeed be condi-

tioned [65]; the feedforward circuits within the SC, in addition to somatosensory feedbacks,

may contribute to SC learning by allowing motoneurons to contrast feedforward and feedback

motor inputs [66]. Supporting the latter, [67] showed that signals in human muscle spindle

afferents during unconstrained wrist and finger movements predict future kinematic states of

their parent muscle. Muscle spindles would then have a forward-sensory-model role, as that

attributed to the cerebellum [68], emphasising the complementarity and overlapping function-

ality between neural regions.

Integrated computational models represent a powerful tool to support and guide experi-

mental studies in the pursuit of a better understanding of the CNS. We believe our spino-
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cerebellar model to contribute in this direction, providing a picture of how the SC influences

cerebellar motor adaptation and learning. Further development of the model, together with

addition of other neural regions, will help to keep elucidating CNS operation.

3.1 Cerebellum and spinal cord modelling assumptions

The implemented cerebellar and spinal cord computational models are physiologically based

and adhere to the principle of biological plausibility. Nonetheless, certain assumptions were

made to facilitate interpretation of the results.

Regarding the cerebellum, it is well-known for its role in motor adaptation and learning, a

role mainly supported by the cerebellar ability to acquire internal models of both body-plant

dynamics and external objects [68]. These internal models are found to be either forward or

inverse; a forward model maps the sensorimotor state to its predicted motor behaviour, whilst

an inverse model maps the desired behaviour to the motor commands that will make it possi-

ble. The literature addresses the existence of both inverse and forward models in the cerebel-

lum and, rather than confronting the two model alternatives, there is theoretical,

computational, and behavioural experimentation that supports the coexistence and comple-

mentarity of both approaches [19, 68–71]. When modelled as a forward model, the cerebellum

modulates the descending motor commands from the motor cortex to correct the mismatch

between predicted and actual motor behaviour. In such cases, the body-plant dynamics are

learnt at higher brain areas, and the cerebellum operates as a corrective mechanism in addition

to the already learnt dynamics. Conversely, when functioning as an inverse model, the cerebel-

lum does not rely on descending motor commands. Instead it can directly provide the entire

motor output and bypass the motor cortex [72]. In our work, the cerebellum is implemented

as an inverse model, therefore putting it in a worst-case scenario in which it needs to learn the

entire body-plant dynamics. The purpose of this approach is to directly address the influence

that the SC has on cerebellar motor learning.

If the implemented cerebellar model were a forward model, it might improve tracking per-

formance; however, it would hinder the evaluation of the influence of the SC on cerebellar

learning. The SC has a direct and fast action over muscles, thus leading to significant modifica-

tions of the arm-plant dynamics. The SC modification of the arm-plant dynamics would affect

the cerebellar learning whilst also influencing the motor cortex output. If the SC control mech-

anisms were already being accounted for at higher brain areas, it would indeed pose challenges

in evaluating and quantifying the SC effect on cerebellar learning. It would be difficult to com-

pare the impact of the SC between our spino-cerebellar and cerebellar cases due to the poten-

tial overlapping factors incorporated by the already accounted SC control mechanisms at

higher brain areas. Using the cerebellum as an inverse model provides a direct means to assess

the effects of the SC on cerebellar motor learning. By isolating the role of the cerebellum in

motor control, we were able to study how the SC influences the cerebellar motor learning, i.e.,

comparison between our spino-cerebellar and cerebellar cases is straightforward.

To further facilitate the comparison between our spino-cerebellar and cerebellar cases, we

simplified the action of the cerebellar output commands, by omitting other inputs to the spinal

cord, e.g. from the motor cortex and basal ganglia. In our cerebellar case, motor behaviour is

solely driven by the cerebellum as the only nervous region present in the control loop. There-

fore, in this case, the cerebellar output commands directly controlled muscle activation. In the

spino-cerebellar case, we maintained the cerebellar descending commands to the SC as direct

control signals, which acted upon motoneurons, thus ensuring equivalent cerebellar output

commands in both the spino-cerebellar and cerebellar cases. This simplified descending path-

way facilitated directly studying the influence of the SC on cerebellar motor learning. Notably,
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our findings suggest that the SC facilitates cerebellar learning, as evidenced by the differences

in the developed cerebellar solutions with and without SC involvement (i.e., spino-cerebellar

vs. cerebellar cases exhibited different GC-PC synaptic weight distributions).

However, the intricate reality of the nervous system presents greater complexity; a signifi-

cant convergence of of cerebral and cerebellar efferent pathways occurs within the SC inter-

neuronal circuitry before reaching motoneurons [73]. This raises a key question: do cerebellar

internal models include this intermediary circuitry and account for the interaction amongst

descending pathways, beyond the dynamics of the musculoskeletal system?

Our work revealed that cerebellar learning is impacted by the interaction with SC circuitry,

and therefore that spinal cord properties should not be underestimated when studying learn-

ing. Other descending pathways, such as those from the pyramidal cortical system likely also

impact cerebellar learning. Given that biological motor learning is determined by the interplay

amongst various nervous regions, future research should expand this study to explore neural

interactions that contribute to this intricate process.

Regarding the cerebellar sensory input, it has been previously stated that within the dorsal

spino-cerebellar tract (DSCT) there is a subpopulation of neurons representing whole limb

parameters and an equally-sized subpopulation representing joint-related signals. This halved

structure allows for an early processing stage of sensory information that facilitates a reference

frame for whole limb kinematics [74]. In our work, the focus was not on this early sensory pro-

cessing in the DSCT. Instead, the proprioception signals provided by the SC in joint space

were directly sent to the cerebellum. Nonetheless, despite its joint-based architecture, the cere-

bellum did account for whole limb kinematics as the driving force behind the motor adapta-

tion process.

Our cerebellar model builds upon Ito’s inverse model assumption [72], which derived from

oculomotor system studies. Here, we extend that cerebellar scheme to the upper limb musculo-

skeletal system, by including a subset of multi-articular muscles, with their associated dynam-

ics, proprioceptive afferents and SC circuits. The structure of our cerebellar model involves

assigning a cerebellar microcomplex to each joint, following Ito’s microcomplex theory [72].

Whilst the input sensory signals and output motor signals are joint-based, i.e., divided in a

modular organisation of different cerebellar functional units [75], the cerebellar learning at

GC − PC synapses, in contrast, considers the entire limb kinematics. GCs are believed to per-

form a recoding of sensory inputs [14, 76], ensuring an univocal and unambiguous representa-

tion of the kinematic state of the limb. GCs, in turn, transmit this sensory state to PCs which,

driven by the CFs instructive action, adapt their activity to cope with the desired motor behav-

iour. Importantly, PCs are innervated by a massive number of GCs, with an estimated

*175,000 GC-PC synapses in the rat cerebellar cortex for each PC [77]. Amongst that massive

GC-PC innervation, PCs receive excitatory inputs not only from GCs within the very same

microcomplex but also from GCs belonging to other microcomplexes. This connectivity allows

the linkage of different cerebellar microcomplexes through GC-PC synapses [75, 78]. In our

model, each PC receives excitatory input from all GCs, not just from those associated with the

very same microcomplex. Therefore, each PC receives the entire sensory information from

GCs, and a specific teaching/instructive signal through a particular CF corresponding to the

same microcomplex, in accordance to CF-PC one-to-one synapses [79]. This connection

arrangement makes synaptic plasticity at PCs to be affected by the sensory information from

all joints and enables the cerebellum to acquire a comprehensive internal model representation

of the upper-limb, rather than a joint-specific representation. Therefore, despite the micro-

complex structure being based on individual joints, the ensemble activity of GCs across PCs

allows for motor adaptation to account for the entire limb kinematics.
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Regarding modelling of the SC circuits, some assumptions were also made. The synaptic

weights of the spinal pathways were selected aiming to reproduce physiological connectivity

by maintaining the ratio between the amplitudes of excitatory postsynaptic potentials (EPSPs)

from Group la afferents reported in [80] and inhibitory postsynaptic potentials (IPSPs) from

Group la inhibitory interneurons observed in [81].

The modelled SC did not include heteronymous excitatory projections for the sake of

interpretability. Heteronymous projections in the human upper limb have been effectively

reported in [82]. According to this study, inhibition occurs significantly more frequently than

excitation between antagonist muscle pairs, with a higher frequency of inhibition received

from antagonists muscles compared to muscles acting across a different joint. In [5, 83] it was

noted that proximal to distal heteronymous Ia connections (from the arm to forearm) were

absent, whilst wide connections from distal to proximal muscles were present, although

weaker from proximal to shoulder muscles. The authors suggested that these stronger connec-

tions at wrist and elbow level may assist the hand muscles in grasping and lifting movements

by providing stability to the corresponding joints. Consequently, heteronymous excitatory

projections are reported to have less significance than heteronymous inhibitory projections in

human upper limb movements. These findings are aligned with our SC model, in which recip-

rocal inhibition pathways allowed to capture this behaviour.

4 Methods

4.1 Ethics statement

Experiments were approved by the Commission cantonale d’éthique de la recherche sur l’être

humain du canton de Vaud (CER-VD) under the license number 2017–02112 and performed

in accordance with the Declaration of Helsinki. The two participants gave their written

consent.

4.2 Spino-cerebellar control loop

The cerebellar and SC models operated in a closed loop with joint and muscle feedback (Fig

1A), in which cerebellar motor learning was assisted by fast reflex response and muscle activity

regulation provided by the SC. The cerebellar model received sensory input signals describing

the desired motor state (desired position, Qd, and velocity, _Qd, per joint) and the actual motor

state of the upper limb musculoskeletal model (actual position, Qa, and velocity, _Qa, per joint).

The comparison of the desired and actual motor states provided the instructive signal (� per

joint), also received by the cerebellum. The cerebellar output comprised a flexor-extensor (i.e.,

agonist-antagonist) pair of control signals (Mf and Me per joint) that were sent to the SC

model, which also received direct muscle feedback (length, lm, and velocity, _lm, per muscle).

The SC generated the muscle excitation signals (um per muscle) resulting in muscle activation

which finally actuated the upper limb musculoskeletal model, thus closing the loop. To contex-

tualise the spino-cerebellar integration, we also implemented the control loop lacking the SC

circuits (Fig 1B). In this scenario, the cerebellar output signals were directly used as muscle

excitation signals. The control loop included sensory and motor delays, mimicking the biologi-

cal pathways. In the cerebellar sensorimotor pathway, there exists a delay ranging from about

100 to 150ms (with inter and intraindividual variations), accounting for the time spent from

the generation of a motor command until sensing back its effect [84]. Regarding the SC to

muscles transmission, a delay of about 30ms has been reported for the upper limb [85, 86].

Our spino-cerebellar model included a 50ms sensorial delay affecting the reception of sensory

inputs in the cerebellum; a transmission delay of 30ms from the cerebellum to the SC, and
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30ms from the SC to the muscles, total motor delay of 60ms. The asymmetry between sensory

and motor delay stands for the higher latency found in neuromuscular junction, electrome-

chanical and force generation delays (involved in the motor pathway), compared to the sens-

ing, nerve conduction and synaptic delays (involved in the sensory pathway) [87].

The following subsections describe the different components of our spino-cerebellar con-

trol loop. The various building blocks were integrated using Robot Operating System (ROS),

allowing a modular implementation.

4.3 Cerebellar model

We implemented a spiking neural network (SNN) replicating some cerebellar neural layers

and equipped with spike-timing-dependent plasticity (STDP) to allow motor learning and

adaptation. The cerebellar SNN model was adapted from previous models [18–21], which have

already been used to study cerebellar motor learning, adaptation capabilities, and robustness

to dynamic changes. Importantly, the cerebellar model presented here and the ones presented

in the aforementioned previous works, all share the same neural populations and learning

mechanism. Thus, building upon previous research, the current work focused on the influence

of the SC on cerebellar motor learning.

The cerebellar SNN structure was divided in the following neural layers: i) mossy fibres

(MFs), constituted the sensory input layer conveying the desired and actual motor state signals

(Qd, _Qd, Qa, _Qa); ii) the spiking activity of MFs was transferred through excitatory afferents to

the granule cell (GC) layer, where the sensory input information was univocally recoded; iii)

the axons of the GCs, i.e., the parallel fibres (PFs), formed excitatory connections with the Pur-

kinje cells (PCs); iv) PCs also received the excitatory action of the climbing fibres (CFs) con-

veying the instructive signal (�); v) the deep cerebellar nuclei (DCN) layer received the

inhibitory action from PCs and excitatory connections from both MFs and CFs. The DCN

spiking activity was translated into output motor commands (flexor-extensor motor control

signals, Mf and Me) that constituted the cerebellar motor response to the sensory stimuli.

Every neural layer was divided in two microcomplexes [72], being each microcomplex ori-

ented to drive one of the two joints (shoulder or elbow). Each microcomplex at the

PC-CF-DCN loop was partitioned into two regions: agonist and antagonist. The agonist region

operated the joint flexor muscles, whereas the antagonist region operated the extensor muscles.

This synergic agonist-antagonist (flexor-extensor) architecture allowed the cerebellar model to

regulate the spatiotemporal muscle activity patterns [55], key for successful motor control

[88]. See Fig 8 for a schematic representation of the cerebellar network, and Table 2 for net-

work topology.

Consistently with the Marr-Albus-Ito theory on cerebellar motor adaptation [90–92], our

cerebellar SNN model was equipped with synaptic plasticity at the GC-PC synapses. The syn-

aptic weights were adjusted by means of an STDP mechanism that correlated the sensory

information (univocally coded at GCs and transferred to PCs through PFs) and the instructive

signal (conveyed to PCs by CFs). This STDP mechanism was a balanced process of long-term

potentiation (LTP) and long-term depression (LTD). Each time a PC neuron received a GC

spike through a PF, that synapse was potentiated (LTP) by a fixed amount as follows:

LTPDWGCi � PCj
ðtÞ ¼ aðdGCspikeðtÞ∗dtÞ ð1Þ

where DWGCi � PCj
ðtÞ stands for the synaptic weight change between GC i and PC j; α = 0.006nS

is the synaptic weight increment; and δGCspike(t) is the Dirac delta function of a GC spike,

received at PCs through PFs.
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Fig 8. Cerebellum model. A) Neural layers, connections, input and output sensorimotor signals. The input signals are conveyed by the mossy fibres

(MFs), which project excitatory synapses to the granule cells (GCs). These perform a recoding of the input signals, and project excitatory connections

through the parallel fibres (PFs) reaching Purkinje cells (PCs). PF-PC connections are endowed with plasticity, balanced between the long-term

potentiation (LTP) caused by the input PF spikes, and long-term depression derived from the climbing fibres (CFs) activity reaching PCs. CFs convey

the instructive signal. Finally, PCs project inhibitory synapses towards the deep cerebellar nuclei (DCN), the output layer of the cerebellar model, which

also receives a baseline excitatory action from MFs and CFs. B) Detailed schematic of the cerebellar connections. Each GC receives the input excitatory

action from a unique combination of four MFs. Each input signal (Qd, _Qd, Qa, _Qa), is codified by ten MFs, being only one out of the ten MFs active at

each time step. Hence, at each time step, four MFs will be active (one per input signal). That unique combination of four input MFs excites one single

GC, allowing to perform a univocal representation of the sensory input at the granular layer. PCs then receive the excitatory action from all GCs in the

cerebellar model and only one CF, allowing to relate the joint-specific instructive signal, to the global sensory state received from GCs. The

PC-CF-DCN loop differentiates between agonist and antagonist regions, thus allowing simultaneous control of both flexor and extensor muscles.

https://doi.org/10.1371/journal.pcbi.1011008.g008

Table 2. Cerebellar neural topology. Dashed entries stand for not applicable. Each GC-PC synapse was randomly initialised within the range [4.3, 5.2nS], except for one

of the three repetitions of the 2000-trial motor adaptation process for each motor task. In that specific repetition, all GC-PC synapses were homogeneously initialised with

4.8nS1.

Neurons Synapses

Pre-synaptic Post-synaptic Number Type Initial Weight (nS) Weight range (nS)

80 MFs 20x103 GCs 80x103 AMPA 0.18 -

80 MFs 200 DCN 16x103 AMPA 0.3 -

20x103 GCs 200 PCs 4000x103 AMPA rand [4.3, 5.2] [0.0, 15.0]

200 PCs 200 DCN 200 GABA 1.0 -

200 CFs 200 PCs 200 AMPA 0.0 -

200 CFs 200 DCN 200 AMPA 0.5 -

200 CFs 200 DCN 200 NMDA 0.25 -

1 We performed an exhaustive search on the STDP parameters that govern the learning dynamics of both the spino-cerebellar and cerebellar models, as described in [16,

17, 89], since these parameters had the greatest impact on the models output commands. The selected parameters were chosen to cover the full working range of the

different motor tasks. To ensure a fair comparison of the performance of the spino-cerebellar and cerebellar models, we used a common set of network parameters for

both cases.

https://doi.org/10.1371/journal.pcbi.1011008.t002
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When the spiking activity of a CF conveyed an instructive signal to a PC neuron, the

GC-PC connection that was involved in that error generation was depressed (LTD) as

described by:

LTDDWGCi � PCj
ðtÞ ¼ b∗

Z tCFspike

� 1

kðt � tCFspikeÞ∗dGCspikeðtÞ∗dt ð2Þ

where β = −0.003nS stands for the synaptic weight decrement; and k(x) defines the integrative

kernel with eligibility trace correlating past sensory inputs with the present instructive signal,

i.e., the amount of LTD due to a CF spike depended on the previous GC activity received at

PCs through PFs (see [20, 21] for a further description). A well-balanced LTP-LTD process

changed the PF-PC synaptic weights, thus modifying the PCs output activity and the inhibitory

action of PCs over DCN neurons, which ultimately varied the DCN output activity. Modulat-

ing the DCN activity allowed adaptation of the output motor response to the input stimuli. An

iterative exposure to the sensory patterns defining the desired motor task, allowed adapting

the motor response for error reduction.

We used leaky integrate and fire (LIF) neurons (see Supporting Information S1 Text) and

EDLUT simulator [93] to build the cerebellar SNN model. Please see [20, 21] for a further

review of the STDP mechanism and cerebellar layers.

4.4 Spinal cord model

Our SC model integrated the descending control signals from the cerebellum and the direct

muscle feedback (Fig 9A). The SC model allowed fast reflex response and muscle activity regu-

lation by means of monosynaptic Ia stretch reflex and disynaptic reciprocal inhibition path-

ways between antagonist muscles. The motoneuron (MN) of a given muscle received the

following inputs: i) an excitatory connection conveying the cerebellar output signal (Mf or Me,

for flexor or extensor muscle); ii) an excitatory connection from the Ia afferent fibre of the

muscle (i.e., stretch reflex); iii) an inhibitory connection from the Ia interneuron (Ia IN) inner-

vated by the Ia afferent of the antagonist muscle (i.e., reciprocal inhibition). The antagonist

relation between the muscles of the upper limb model is detailed below. The neuron leaky inte-

grate dynamics of the MN firing rate, r, were modelled as follows:

t _rðtÞ ¼ � rðtÞ þ sð
X

i
wiriðt � tiÞÞ ð3Þ

where τ = 1ms stands for the spinal neuron activation time constant; sðxÞ ¼ 1

1þexpð� Dðx� 0:5ÞÞ
with

D = 8, emulating the on-off behaviour of neurons; i describes the MN input signals; wi is the

synaptic weight of the input connection, being 1.0 for excitatory synapses and 0.5 for the inhib-

itory to reproduce physiological connectivity [80, 81] (see Discussion for further details); ri is

the input activity; and τi = 30ms stands for the stretch reflex response delay. Depending on

neuron size, τ can vary from 1 to 10ms [94], we only considered fast-response neurons as in

[30]. For the upper limb, τi is about 30ms [85, 86]. The output rates of the MNs are finally pro-

vided as muscle excitation signals to the musculoskeletal model through a sigmoid (u(t) = σ(r
(t))), thus inducing movement. The dynamics of Ia IN neurons followed the same description,

with differing input activity including inhibitory connections between antagonist Ia IN (Fig

9B).

We used Prochazka’s model for the Ia afferent feedback dynamics [95], with a mean firing

rate of 10Hz [30, 96, 97]:

rIaðtÞ ¼ sgnð_lmðtÞÞ∗4:3j_lmðtÞj
0:6

þ
þ 2ðlmðtÞ � l0;mÞ þ 10 ð4Þ
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where lm and _lm describes the muscle fibre length and velocity in mm and mm/s; and |x|+ =

max(|x|, 0.01). The output rate, rIa, was scaled by its maximum rIa,max to get a normalised

value, i.e., rIa�[0,1].

To model the SC we used FARMS Python library, developed at the BioRobotics laboratory

[98].

4.5 Musculoskeletal upper limb model

We used a two DOF musculoskeletal upper limb model as the front-end body to be controlled.

The model, adapted from [41], included two flexion-extension joints: shoulder and elbow. The

model was actuated by eight Hill-based muscles [99], with the following joint distribution: i)

for the shoulder, flexion was carried by the deltoid anterior (DELTant) and the biceps long

(BIClong), and extension was conducted by the deltoid posterior (DELTpost) and the triceps

long (TRIlong); ii) for the elbow, flexion was provided by the biceps long and short (BICshort)

and the brachialis (BRA), whilst extension was allowed by the triceps long, lateral and medial

(TRIlat, TRImed). Note that BIClong and TRIlong were biarticular muscles, as they actuated

both joints. The antagonist relation between muscles is depicted in Fig 9B. The Hill-based

muscle dynamics were the following:

fm ¼ ða∗flvðlm; _lmÞ þ fpðlmÞÞ∗cosy

da
dt
¼

u � a
tðu;AÞ

8
>><

>>:

ð5Þ

with fm the muscle force, flv a combination of the force-length and force-velocity curves, fp the

Fig 9. Spinal cord model. A) The spinal cord circuits were modelled as one motoneuron per muscle, receiving an excitatory input control signal (M)

from the cerebellum, an excitatory connection from the Ia afferent fibre of the muscle (i.e., stretch reflex) and an inhibitory connection from the Ia

interneuron (Ia IN) innervated by the Ia afferent of the antagonist muscle (i.e., reciprocal inhibition). We also included inhibitory connections between

antagonist Ia interneurons. Each neuron is modelled with leaky integrate dynamics. B) Antagonist relation between the eight upper limb muscles: all

the muscles shared the same synaptic weight for the stretch reflex and reciprocal inhibition pathways, i.e., 1.0 for excitatory synapses and 0.5 for the

inhibitory.

https://doi.org/10.1371/journal.pcbi.1011008.g009
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passive force-length curve, θ the pennation angle, a the muscle activation (i.e., the concentra-

tion of calcium ions within the muscle), and u the muscle excitation (i.e., the firing of the MN)

[99]. We used OpenSim physics engine to simulate the muscle and skeleton dynamics [42]. To

allow using kinematics and EMG from lab recordings, an OpenSim upper limb model was

scaled to match the morphology of each lab participant. This scaling process was achieved

using OpenPifPaf Human Pose Estimation algorithm [100] during the static period and Open-

Sim scaling tool.

4.6 Benchmarking with various motor tasks

We used a set of different motor tasks to be performed by the spino-cerebellar and cerebellar

models, differentiating between two scenarios: lab recorded and lab designed motor tasks.

For the lab recorded scenario, we used kinematics and EMG recordings from healthy par-

ticipants performing different arm movements. Experiments were approved by the Commis-

sion cantonale d’éthique de la recherche sur l’être humain du canton de Vaud (CER-VD)

under the license number 2017–02112 and performed in accordance with the Declaration of

Helsinki in NeuroRestore laboratory at Lausanne CHUV. After obtaining their written con-

sent, two participants, P1 and P2, were asked to perform planar reaching movements (flexion-

extension) and continuous circular movements, both movements performed in the vertical

plane and at various speeds (self-selected speeds). For flexion-extension movements both

shoulder and elbow moved in the same direction, whilst during the continuous circular move-

ments the joints moved in opposite directions. Thus, our benchmark includes interaction tor-

ques both assisting and resisting the movement. The recorded kinematics (i.e., joint position

and velocity) constituted the desired motor state (Qd, _Qd) used as the control loop sensory

input, whilst the EMG recordings supported model validation in muscle space. For each

recorded motor task we ran the experimental setup with both the spino-cerebellar and cerebel-

lar models, using an OpenSim upper limb model scaled to match the participant’s morphol-

ogy. We then compared the models’ experimental performance to the lab recordings in both

joint and muscle spaces.

P1 and P2 movements were recorded using an RGB-D camera, and we used OpenPifPaf

human pose estimation algorithm [100] to extract the 2D positions of the participant’s ana-

tomical joints at a frame rate of 25fps. Then 3D pose was deduced from the 2D pose, camera

intrinsic, and depth information after accounting for distortion. The occlusions were removed

using specially designed filters that ensure coherence in joint anatomy and time. We scaled an

OpenSim upper limb musculoskeletal model to match the participant’s morphology, and ran

inverse kinematics (IK) over the body segment kinematics, thus allowing the extraction of

joint position and velocity from the participant’s motion. P1 generally performed fast move-

ments, and the kinematics recordings of the fast circular movements were too noisy to extract

joint position, thus we excluded this scenario from our analysis. For muscle activity, we

recorded EMG using Delsys system and Trigno Avanti and Trigno Quattro sensors with an

acquisition frequency of 1259.3Hz. We aligned the EMG with the kinematics signals thanks to

a trigger inducing a pulse in an additional EMG channel and lightning a led in the camera

range. We then computed the EMG envelopes to compare with our models muscle activation

signals. For each recorded signal, we removed the mean and rectified the signal, which was

then filtered using a low pass Butterworth filter with a 5Hz cutoff frequency. We applied the

same processing steps to the maximal voluntary contraction (MVC) signal of each muscle

(recorded at the beginning of the session), and used the maximal value of the processed MVC

to normalise the corresponding muscle processed EMG signal.
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For the lab designed scenario, we implemented a set of flexion-extension movements with

different bell-shaped joint velocity profiles, characteristic of multi-joint arm reaching move-

ments [44]. We then used the joint kinematics (Qd, _Qd) as the desired motor state to be per-

formed by the spino-cerebellar and cerebellar models (please see Supporting Information for a

depiction of the bell-shaped trajectories, S10–S12 Figs). We broadened the benchmark by add-

ing a perturbation study using these bell-shaped trajectories. After cerebellar learning consoli-

dation, we applied a set of motor perturbations whilst the trajectories were being performed:

50N for 30ms, applied to the hand in different directions and at different points along the flex-

ion-extension movement. Each perturbation type was applied to 50 separate trials to get an

average response, leaving 3 non-perturbed trials in between perturbed trials so that the model

returned to its unperturbed state. Note that cerebellar learning was disabled during the pertur-

bation study, to avoid cerebellar adaptation to the external forces and focus on SC response.

To further extend the perturbation benchmark we tested two additional models in the afore-

mentioned setup: i) SR-cerebellar model; i.e., spinal cord model equipped with just stretch

reflex; ii) RI-cerebellar model; i.e., spinal cord model equipped with just reciprocal inhibition.

This scenario allowed us to assess the influence of each implemented SC mechanism in han-

dling perturbations.

Using this motor benchmark, and comparing the performance of the spino-cerebellar and

cerebellar models, we could evaluate the cerebellum and spinal cord integration in terms of:

muscle activity, motor adaptation and joint space performance, synaptic adaptation, and

response to motor perturbations, for various trajectories with different initial and final posi-

tions and speeds. Please see Supporting Information for a representation of the motor tasks

joint kinematics (S1–S12 Figs).

4.7 Cerebellar instructive signal

The cerebellar instructive signal �(t) was obtained as the mismatch between the desired and

actual joint state, combining in a single value per joint both position and velocity errors as fol-

lows:

�ðtÞ ¼ Kp½QdðtÞ � QaðtÞ� þ Kv½
_QdðtÞ � _QaðtÞ� ð6Þ

where Kp = 3 and Kv = 1 are the position and velocity error gain, respectively. The trajectory

error signal in joint space can be derived from the proprioceptive and sensory information

conveyed by the spino-cerebellar tract from the muscle spindles (muscle length) and Golgi ten-

don organs (muscle force) to the cerebellum [101].

Both the spino-cerebellar and cerebellar models were trained exclusively using kinematics

to highlight the influence of the SC in modulating muscle activity. If EMG data had been

incorporated in training the models, the cerebellar network would adapt and learn to replicate

the recorded muscle patterns, resulting in similar muscle recruitment strategies for both the

spino-cerebellar and cerebellar models. In other words, the influence of the SC in muscle activ-

ity modulation would be diminished.

4.8 Performance metrics

4.8.1 Measuring kinematics performance. To evaluate the kinematic performance of the

spino-cerebellar and cerebellar models, we defined a set of metrics based on the mean absolute
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error (MAE) between the desired (Qd, _Qd) and actual (Qa, _Qa) motor state of the arm:

MAEposðtÞ ¼
1

N

XN

j¼1
jQd;jðtÞ � Qa;jðtÞj

MAEvelðtÞ ¼
1

N

XN

j¼1
j _Qd;jðtÞ � _Qa;jðtÞj

8
>>><

>>>:

ð7Þ

where N stands for the number of joints (2), and j for the joint index. We considered the posi-

tion and velocity MAE of each motor task trial to assess the performance accuracy:

MAEpos ¼
1

T

XT

t¼0
MAEposðtÞ

MAEvel ¼
1

T

XT

t¼0
MAEvelðtÞ

8
>><

>>:

ð8Þ

where T stands for the motor task period. We finally averaged these values over the last 200 tri-

als of the motor adaptation process, and compared the final performance of the two models

with the final mean MAEpos and MAEvel ( �MAEpos;f ,
�MAEvel;f ). We also computed the standard

deviation (std) and the T-test p-value between the two models’ performance with a T-test for

the means of two independent samples of values [102] (computed using Python function

scipy.stats.ttest_ind [103]).

4.8.2 Measuring learning performance. To measure the learning convergence (i.e., num-

ber of trials required to reach a stable trajectory tracking), we used control chart metrics [43].

Throughout the MAEpos and MAEvel curve of each motor task (all performed 3 times, each rep-

etition consisting of 2000 learning trials) we computed the mean (μ) and standard deviation

(σ) using a sample size of 200 trials, which provided the following performance stability limits:

L1 ¼ �MAEx 2 ½m � s; mþ s�

L2 ¼ �MAEx 2 ½m � 3s; m � 2s�U½mþ 2s; mþ 3s�

L3 ¼ �MAEx 2� � 1;m � 3s�U½mþ 3s;þ1½

8
>>><

>>>:

ð9Þ

We then checked the percentage of those 200 trials within each limit. As the limits were

defined by the std, we also checked that the std value was below 0.012rad for position and

0.055rad/s for velocity. Thus, at trial x, the behaviour was stable if the percentage of the 200

previous trials within each limit fulfilled the metrics defined in Table 3, and the std was equal

or below the aforementioned values. We then averaged each motor task metrics obtained from

each of the three repetitions. By comparing the learning convergence of the spino-cerebellar

and cerebellar models (i.e., number of trials required to reach a stable performance) we quanti-

fied the effect of the SC in the cerebellar motor adaptation process.

Additionally, we assessed the learning speed of the two models by considering the number

of trials required to reach a target MAEpos of 0.1rad and a target MAEvel of 0.5rad/s. We defined

Table 3. MAE convergence criteria from control chart.

Stability limit MAEpos MAEvel
L1 = MAEx 2 [μ − σ, μ + σ] � 75% � 73%

L2 = MAEx 2 [μ − 3σ, μ − 2σ]U[μ + 2σ, μ + 3σ] � 3% � 3%

L3 = MAEx 2]−1, μ − 3σ]U[μ + 3σ, +1[ � 2% � 2%

σ � 0.012 � 0.055

https://doi.org/10.1371/journal.pcbi.1011008.t003
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the learning speed metric as 1 over this number of trials (N � 1
trials). The target values (0.1 rad and

0.5 rad/s) were such that they provided a common measure for all motor tasks whilst also tak-

ing into account the diversity of final MAE values amongst the different motor tasks. The final

mean MAE of all motor tasks (including both spino-cerebellar and cerebellar models) was 0.03

rad for position, and 0.27 rad/s for velocity. To set the learning speed targets, we doubled these

mean values and rounded them to the nearest tenth, resulting in 0.1 rad for position and 0.5

rad/s for velocity.

Thus, we evaluated how long it took for the performance to stabilise (learning convergence)

and how fast the performance approached accurate tracking (learning velocity).

4.8.3 Measuring cerebellar synaptic adaptation. To conduct a direct comparison

between the synaptic adaptation of both the spino-cerebellar and cerebellar models, the

GC-PC synaptic weights were homogeneously initialised in one of the three repetitions of the

motor adaptation process for each motor task; thus providing a common synaptic starting

point that allowed studying the differences at the synaptic level.

To study the effect of the SC in cerebellar synaptic adaptation we quantified the difference

in the synaptic weight distribution at GC-PC connections between the spino-cerebellar and

cerebellar models. Each PC was innervated by all GCs in the model; i.e., a GC formed an excit-

atory synapse with each PC (total number of GCs in the model i = 20000; total number of PCs

in the model j = 200). We stored the synaptic weight of all GC-PC synapses in a matrix of size

ixj:

W ¼

w1;1 w1;2 . . . w1;j

w2;1 w2;2 . . . w2;j

. . .

wi;1 wi;2 . . . wi;j

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð10Þ

where wx,y is the synaptic weight of the synapse between GC x and PC y.

We then represented the normalised weights stored in W, using i as the y-axis and j as the

x-axis, providing a visual representation of the synaptic weight distribution (Fig 4A and 4B).

To analyse the differences between the synaptic patterns that were formed in each model, we

applied to the images Shannon’s entropy from [104], thus providing a quantitative measure of

the complexity of the synaptic distribution. The higher the entropy, the more heterogeneous

the synaptic weights; i.e., more specialised GC-PC connections were formed.

To measure the number of GC neurons required by the spino-cerebellar and cerebellar

models to successfully adapt to each motor task, we measured the percentage of GC-PC synap-

ses that, by the end of the 2000 trials, had experienced a modification of their initial weight (set

to 4.8nS, see Table 2).

4.8.4 Measuring robustness against perturbations. To assess the robustness against per-

turbations, for each applied perturbation type we computed the mean MAE deviation from

the no-perturbation scenario over the 50 perturbed trials as follow:

D �MAEpos ¼
1

50

X50

i¼1
jMAEpos;i �

�MAEpos;f j

D �MAEvel ¼
1

50

X50

i¼1
jMAEvel;i �

�MAEvel;f j

8
>>><

>>>:

ð11Þ

where MAEx,i is the MAE resulting from the ith perturbed trial and �MAEx;f the final MAE for

the corresponding no-perturbation scenario. We also computed the standard deviation. The
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MAE deviation results of the four models (spino-cerebellar, cerebellar, SR-cerebellar, and RI-

cerebellar) were compared using a Kruskal-Wallis H-test [105] (computed using Python func-

tion scipy.stats.kruskal [103]) to assess the overall difference amongst the four cases, followed

by a Dunn test [106] (computed using Python function scikit-posthocs.posthoc_dunn [107])

to conduct pairwise tests. We also compared the mean joint CCI values of the four models dur-

ing 50 trials for each of the three trajectories, performed without perturbations.

4.8.5 Measuring muscle space performance. We also evaluated performance in the mus-

cle space using the lab recorded benchmark. Activation signals from models are commonly

compared to EMG envelopes, but such comparisons are generally difficult to achieve due to

scaling issues that hinder a direct analogy between the model and the real muscle dynamics;

EMG signals are difficult to normalise and subject to measurement errors [108]. Besides, our

musculoskeletal model is a simplification of the human upper limb, thus further hindering

direct comparison of recorded EMG and the models muscle activation. To overcome this

issue, we followed a more comprehensive approach by computing the correlation between

activation signals and EMG envelopes; a commonly adopted solution to the aforementioned

limitations [109–111]. We computed the EMG envelopes by rectifying and low pass filtering

the signals using a 5th order Butterworth filter with a cut-off frequency of 5Hz. We also

recorded the maximal velocity contraction (MVC) signals for each participant, we processed

them the same way and finally normalised the EMG signals by the maximum of the muscle

MVC signal. Then, for each movement type, we considered only the main activated muscles

with clear activation patterns during the recordings, i.e., DELTant, BIClong, BICshort, TRIlat

and BRA for P1 flexion-extension movements; DELTant, DELTpost, BIClong, TRIlat and

BRA for P1 circular movements; DELTant, BIClong, TRIlong and TRIlat for P2 flexion-exten-

sion movements; and DELTant, DELTpost, and BRA for P2 circular movements. Thus, there

is inter-participant variability in muscle patterns, as previously described for multi-joint move-

ments in [112] (the participants’ recorded EMG data and the corresponding main muscle pat-

terns are displayed in Fig 5). Additionally, the differences in EMG strategies between

participants were influenced by variations in movement kinematics, i.e., the participants did

not perform the exact same movements (refer to Fig 2 and S1–S9 Figs for the joint kinematics

of each P1 and P2 movement). It is worth noting that during flexion-extension movements, P2

exhibited smaller shoulder extension and larger elbow flexion compared to P1, resulting in

greater activation of the BICshort and BRA muscles, and lesser activation of the DELTpost

and TRIlong muscles. Similarly, during circular trajectories, P2 exhibited greater elbow flexion

corresponding to larger activation of BICshort and BRA muscles. In our experimental setup,

we computed the maximal correlation around lag 0 (on a window of one-fourth of the move-

ment duration) for the 200 trials reaching the learning convergence metric and extracted the

mean, standard deviation and T-test p-value between the spino-cerebellar and cerebellar

model results. Regarding the lab recorded data, we did not consider those muscles that pre-

sented low and noisy EMG signals; however, those muscles were actually activated in our

experimental simulations. Our musculoskeletal model indeed contained only eight muscles, so

that such overactivation may reproduce other non-modelled muscle recruitment.

To study our cocontraction hypothesis, we computed and compared the cocontraction

index (CCI) for each joint. From lab recordings or experimental simulations, we considered

the average of EMG envelop or muscle activation signals, respectively, within each agonist and

antagonist muscle group (i.e, DELTant and BIClong for shoulder flexor muscles; DELTpost

and TRIlong for shoulder extensors; BIClong, BICshort and BRA for elbow flexors; TRIlong

and TRIlat for elbow extensors). It is worth noting that biarticular muscles play specialised

roles in energy-efficient transfer of momentum between joints [113], whilst also contributing

to movement stabilisation through cocontraction [39]. Biarticular muscles were fully

PLOS COMPUTATIONAL BIOLOGY The spinal cord facilitates cerebellar upper limb motor learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011008 January 2, 2024 30 / 40

https://doi.org/10.1371/journal.pcbi.1011008


accounted for when computing the CCI for both the shoulder and elbow. The joint CCI was

computed using the method developed in [114], by which high CCI values correspond to high

levels of activation of both agonist and antagonist muscle groups, and low CCI values indicate

poor activation of both muscle groups, or high activation of one muscle group and low activa-

tion of the opposing group. Importantly, this method for extracting CCI was later evaluated in

[115], demonstrating a strong correlation between CCI and joint stiffness. Joint CCI was given

by:

CCIjðtÞ ¼
�EMGj;lðtÞ
�EMGj;hðtÞ

ð �EMGj;lðtÞ þ �EMGj;hðtÞÞ ð12Þ

where �EMGj;l is the level of activity in the less active muscle group and �EMGj;h the level of

activity in the most active muscle group for each joint. As this index is also sensitive to scaling,

we computed the maximal correlation around lag 0 (on a window of one-fourth of the move-

ment duration) for the first 200 trials reaching our learning convergence metric (see Methods)

and extracted the mean, standard deviation and T-test p-value between the spino-cerebellar

and cerebellar model results. We also computed the mean joint CCI over each trajectory. A

similar trend as that seen for the MAEvel was observed. We studied this potential relationship

through a linear regression over all P1 and P2 trajectories.

Supporting information

S1 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 1 (P1) slow flexion-extension. A) Position and velocity mean

absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-cerebel-

lar and cerebellar models performing P1’s slow flexion-extension (2.3 s). B) Joint kinematics

of the first 200 trials (mean and standard deviation, std) for both models performing P1’s slow

flexion-extension (2.3 s). C) Joint kinematics of the last 200 trials (mean and std) for both

models performing P1’s slow flexion-extension (2.3 s).

(TIF)

S2 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 1 (P1) moderate flexion-extension. A) Position and velocity

mean absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-

cerebellar and cerebellar models performing P1’s moderate flexion-extension (1.7 s). B) Joint

kinematics of the first 200 trials (mean and standard deviation, std) for both models perform-

ing P1’s moderate flexion-extension (1.7 s). C) Joint kinematics of the last 200 trials (mean and

std) for both models performing P1’s moderate flexion-extension (1.7 s).

(TIF)

S3 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 1 (P1) fast flexion-extension. A) Position and velocity mean

absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-cerebel-

lar and cerebellar models performing P1’s fast flexion-extension (1.3 s). B) Joint kinematics of

the first 200 trials (mean and standard deviation, std) for both models performing P1’s fast

flexion-extension (1.3 s). C) Joint kinematics of the last 200 trials (mean and std) for both

models performing P1’s fast flexion-extension (1.3 s).

(TIF)

S4 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 1 (P1) moderate circle trajectory. A) Position and velocity
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mean absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-

cerebellar and cerebellar models performing P1’s moderate circle trajectory (1.3 s). B) Joint

kinematics of the first 200 trials (mean and standard deviation, std) for both models perform-

ing P1’s moderate circle trajectory (1.3 s). C) Joint kinematics of the last 200 trials (mean and

std) for both models performing P1’s moderate circle trajectory (1.3 s).

(TIF)

S5 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 2 (P2) slow flexion-extension. A) Position and velocity mean

absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-cerebel-

lar and cerebellar models performing P2’s slow flexion-extension (3.5 s). B) Joint kinematics

of the first 200 trials (mean and standard deviation, std) for both models performing P2’s slow

flexion-extension (3.5 s). C) Joint kinematics of the last 200 trials (mean and std) for both

models performing P2’s slow flexion-extension (3.5 s).

(TIF)

S6 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 2 (P2) moderate flexion-extension. A) Position and velocity

mean absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-

cerebellar and cerebellar models performing P2’s moderate flexion-extension (2.4 s). B) Joint

kinematics of the first 200 trials (mean and standard deviation, std) for both models perform-

ing P2’s moderate flexion-extension (2.4 s). C) Joint kinematics of the last 200 trials (mean and

std) for both models performing P2’s moderate flexion-extension (2.4 s).

(TIF)

S7 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 2 (P2) slow circle trajectory. A) Position and velocity mean

absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-cerebel-

lar and cerebellar models performing P2’s slow circle trajectory (2.7 s). B) Joint kinematics of

the first 200 trials (mean and standard deviation, std) for both models performing P2’s slow

circle trajectory (2.7 s). C) Joint kinematics of the last 200 trials (mean and std) for both mod-

els performing P2’s slow circle trajectory (2.7 s).

(TIF)

S8 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 2 (P2) moderate circle trajectory. A) Position and velocity

mean absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-

cerebellar and cerebellar models performing P2’s moderate circle trajectory (1.6 s). B) Joint

kinematics of the first 200 trials (mean and standard deviation, std) for both models perform-

ing P2’s moderate circle trajectory (1.6 s). C) Joint kinematics of the last 200 trials (mean and

std) for both models performing P2’s moderate circle trajectory (1.6 s).

(TIF)

S9 Fig. Spino-cerebellar and cerebellar models kinematics performance for the lab

recorded scenario, participant 2 (P2) fast circle trajectory. A) Position and velocity mean

absolute error (MAE) over the 2000-trial motor adaptation process for both the spino-cerebel-

lar and cerebellar models performing P2’s fast circle trajectory (1.2 s). B) Joint kinematics of

the first 200 trials (mean and standard deviation, std) for both models performing P2’s fast cir-

cle trajectory (1.2 s). C) Joint kinematics of the last 200 trials (mean and std) for both models

performing P2’s fast circle trajectory (1.2 s).

(TIF)
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S10 Fig. Spino-cerebellar and cerebellar models kinematics performance for the bench-

mark scenario, bell-shaped slow flexion-extension. A) Position and velocity mean absolute

error (MAE) over the 2000-trial motor adaptation process for both the spino-cerebellar and

cerebellar models performing bell-shaped slow flexion-extension (3 s). B) Joint kinematics of

the first 200 trials (mean and standard deviation, std) for both models performing bell-shaped

slow flexion-extension (3 s). C) Joint kinematics of the last 200 trials (mean and std) for both

models performing bell-shaped slow flexion-extension (3 s).

(TIF)

S11 Fig. Spino-cerebellar and cerebellar models kinematics performance for the bench-

mark scenario, bell-shaped moderate flexion-extension. A) Position and velocity mean abso-

lute error (MAE) over the 2000-trial motor adaptation process for both the spino-cerebellar

and cerebellar models performing bell-shaped moderate flexion-extension (2.3 s). B) Joint

kinematics of the first 200 trials (mean and standard deviation, std) for both models perform-

ing bell-shaped moderate flexion-extension (2.3 s). C) Joint kinematics of the last 200 trials

(mean and std) for both models performing bell-shaped moderate flexion-extension (2.3 s).

(TIF)

S12 Fig. Spino-cerebellar and cerebellar models kinematics performance for the bench-

mark scenario, bell-shaped fast flexion-extension. A) Position and velocity mean absolute

error (MAE) over the 2000-trial motor adaptation process for both the spino-cerebellar and

cerebellar models performing bell-shaped fast flexion-extension (1.5 s). B) Joint kinematics of

the first 200 trials (mean and standard deviation, std) for both models performing bell-shaped

fast flexion-extension (1.5 s). C) Joint kinematics of the last 200 trials (mean and std) for both

models performing bell-shaped fast flexion-extension (1.5 s).

(TIF)

S13 Fig. Spino-cerebellar and cerebellar models performance in muscle space for the

recorded trajectories from P1. The maximum correlation between activation signals and

EMG around lag 0 are displayed for the main activated muscles during each movement type.

(TIF)

S14 Fig. Spino-cerebellar and cerebellar models performance in muscle space for the

recorded trajectories from P2. The maximum correlation between activation signals and

EMG around lag 0 are displayed for the main activated muscles during each movement type.

(TIF)

S15 Fig. Evolution of the joint cocontraction index (CCI) over the motor adaptation pro-

cess. A), B) Joint CCI for both the spino-cerebellar and cerebellar models during the

2000-trial motor adaptation process for all P1 and P2 trajectories, respectively. Top row shows

the shoulder CCI, bottom row displays the elbow CCI.

(TIF)

S16 Fig. Spino-cerebellar and cerebellar models performance in kinematics space for bell-

shaped trajectories. The final performance (MAE), convergence time (from control chart),

and learning speed (1 over the number of trials to reach a target MAE value) are compared.

(TIF)

S17 Fig. Spino-cerebellar, SR-cerebellar, RI-cerebellar and cerebellar model response

against external force perturbations during bell-shaped flexion-extension trajectories. A)

Position MAE deviation (D �MAE) caused by all the perturbations applied during the 3s flex-

ion-extension trajectory for the four models. Mean D �MAE and standard deviation (std) of 50
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trials are displayed. B) Velocity MAE deviation (D �MAE) caused by all the perturbations

applied during the 3s flexion-extension trajectory for the four models. Mean D �MAE and std of

50 trials are displayed. C) Position MAE deviation (D �MAE) caused by all the perturbations

applied during the 1.5s flexion-extension trajectory for the four models. Mean D �MAE and std

of 50 trials are displayed. D) Velocity MAE deviation (D �MAE) caused by all the perturbations

applied during the 1.5s flexion-extension trajectory for the four models. Mean D �MAE and std

of 50 trials are displayed.

(TIF)

S1 Text. Leaky integrate and fire neuron model dynamics.

(DOCX)

S1 Table. Neuron parameters.

(XLSX)
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