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The basal ganglia (BG) is a brain structure that has long been proposed

to play an essential role in action selection, and theoretical models of

spiking neurons have tried to explain how the BG solves this problem. A

recently proposed functional and biologically inspired network model of the

striatum (an important nucleus of the BG) is based on spike-timing-dependent

eligibility (STDE) and captured important experimental features of this nucleus.

The model can recognize complex input patterns and consistently choose

rewarded actions to respond to such sensory inputs. However, model tuning

is challenging due to two main reasons. The first is the expert knowledge

required, resulting in tedious and potentially biased trial-and-error procedures.

The second is the computational cost of assessing model configurations

(approximately 1.78 h per evaluation). This study addresses the model tuning

problem through numerical optimization. Considering the cost of assessing

solutions, the selected methods stand out due to their low requirements

for solution evaluations and compatibility with high-performance computing.

They are the SurrogateOpt solver of Matlab and the RBFOpt library, both

based on radial basis function approximations, and DIRECT-GL, an enhanced

version of the widespread black-box optimizer DIRECT. Besides, a parallel

random search serves as a baseline reference of the outcome of opting for

sophisticatedmethods. SurrogateOpt turns out to be the best option for tuning

this kind of model. It outperforms, on average, the quality of the configuration

found by an expert and works significantly faster and autonomously. RBFOpt

and the random search share the second position, but their average results are

below the option found by hand. Finally, DIRECT-GL follows this line becoming

the worst-performing method.
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1. Introduction

Computational models of the brain are useful tools for

learningmechanisms. However, the difficulty involved in finding

parameters that provide good solutions is a major challenge.

A model already published in a previous article (Gonzalez-
Redondo et al., 2022) is a complex model that is difficult
to obtain good solutions for. This model tries to better

understand how learning through interaction to achieve a
goal is solved by animals (or agents) by choosing among
many possible actions to obtain rewards, as described in the

reinforcement learning (RL) paradigm (Sutton et al., 1992). The

model is based on spike-timing-dependent eligibility (Gurney

et al., 2015) (STDE), a learning rule capturing important

experimental features in the brain and, specifically the basal

ganglia (BG, a set of nuclei located in the forebrain). This

brain structure is related to the process of action-selection,

according to biological (Graybiel, 1998; Hikosaka et al., 2000;

Grillner et al., 2005) and computational studies (Redgrave

et al., 1999; Gurney et al., 2001; Tomkins et al., 2014). We

implemented (Gonzalez-Redondo et al., 2022) a functional and

biologically inspired network model of the striatum (STR, an

important input nucleus of the BG), where learning is based

on STDE. The proposed model has been demonstrated to

be capable of recognizing input patterns relevant to the task

and consistently choosing rewarded actions in response to

that input.

However, models require tuning (Van Geit et al., 2007;

Martínez-Álvarez et al., 2016), and the quality expectations,

datasets, and adaptability requirements are continuously

growing (Van Geit et al., 2008; Masoli et al., 2020). The model

described in Gonzalez-Redondo et al.’s (2022) study, which

attracts the attention of this work, contains dozens of free

parameters: learning kernel shapes, synaptic and neuron time

constants, lateral inhibition weight, etc. Some of them can

be inferred from experimental data, but most of them must

be manually tuned with plausible values. With this number

of parameters, the curse of dimensionality leads to a tedious

trial-and-error search procedure prone to failures. Another

problem is the computational cost of evaluating each model

configuration: it takes approximately 1.78 h per evaluation

in a modern laptop using a single CPU core. Both made the

tuning of our model slow (the parameters finally used were

found after 2 months of search), sub-optimal (as there is a huge

parametric space not covered), and biased (by the intuition of

the expert). Fortunately, model tuning can be addressed as a

global optimization problem. There exists modern frameworks,

such as Ray[Tune] (Liaw et al., 2018) and Vizier (Golovin et al.,

2017), which implement multiple algorithms compatible with

this purpose. Besides, the current increase in computer power

that allows for defining more sophisticated models also helps us

to face more challenging optimization problems (Van Geit et al.,

2008; Cruz et al., 2021; Marín et al., 2021).

When addressing model tuning as an optimization problem,

the objective function generally represents the difference

between the desired and achieved output of the model for

any candidate configuration. Concerning the associated

problem, when the objective function exhibits mathematically

exploitable properties, such as linearity, convexity, and

continuous variables, it can be exactly solved. Otherwise,

its resolution can be significantly challenging (Lindfield and

Penny, 2017; Salhi, 2017). This issue might arise when the

objective function does not have a closed analytical form or

relies on sophisticated models with non-linear expressions,

uncertainty, and simulations (Cruz et al., 2018; Marín et al.,

2021). Luckily, some methods aim at finding acceptable results

with a reasonable effort by using randomness and intuitive

ideas. Most heuristics and meta-heuristics would fall into this

group (Lindfield and Penny, 2017; Salhi, 2017). Similarly, if a

method does not have specific knowledge or strict requirements

for the objective function apart from being able to evaluate

candidate solutions, it is classified as a black-box optimizer

(Audet and Hare, 2017; Golovin et al., 2017). Both categories are

frequently linked, as many meta-heuristics, such as evolutionary

and swarm intelligence algorithms, are also black-box methods.

In this context, black-box optimization methods can be

classified into two groups: those without specific components to

require few function evaluations and those with them. It could

be said that needing a few function evaluations to converge

is one of the goals pursued when designing any optimization

method. However, most population-based meta-heuristics need

numerous function evaluations (Costa and Nannicini, 2018)

to compensate for their instability due to randomness (Jones

and Martins, 2021). They would hence fall into the first group.

For instance, for the successful evolutionary optimizer UEGO

(García-Martínez et al., 2015; Cruz et al., 2018; Marín et al.,

2021), a robust configuration could need up to 1,000,000

function evaluations (Ortigosa et al., 2001). This potential

requirement is usually attenuated with parallel computing,

which fits well with population-based algorithms (Storn and

Price, 1997; Jelásity, 2013; Cruz et al., 2019). This can be seen

as a brute-force approach to tackle the high consumption of

function evaluations. The methods in the second group do not

renounce the benefits of high-performance computing, but they

try to avoid function evaluations by design. Their use can be the

only option when the cost of evaluating the objective function

cannot be hidden with parallel computing. The most relevant

methods in this group are surrogate optimizers (Vu et al.,

2017; Bhosekar and Ierapetritou, 2018; Costa and Nannicini,

2018), which avoid evaluating the real objective function by

constructing a lightweight model of it. They define an active

research line in global optimization.

In this work, the objective function is not a plain

mathematical function, such as a parabola. Instead, each

evaluation launches a process that consists of building the neural

network according to the input parameters of the candidate
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configuration, training it, and returning its performance at the

target task. As mentioned above, this process is computationally

demanding. For this reason, this study pays attention to

optimization algorithms requiring few function evaluations.

The selection consists of four solvers in total. The first two

are SurrogateOpt, provided by the official Global Optimization

Toolbox of Matlab (López, 2014), and RBFOpt (Costa and

Nannicini, 2018), open-sourced and written in Python. Both

constructed a surrogate of the real objective function by

combining radial basis ones (Gutmann, 2001; Regis and

Shoemaker, 2007). The third method is DIRECT-GL (Stripinis

et al., 2018), an enhanced version of the widespread DIRECT

(Jones and Martins, 2021), which stands out due to its

deterministic and effective strategy of dividing the search space

and prioritizing the most promising areas to save function

evaluations. The last one is a simple random search (Cruz et al.,

2018), which is expected to define the baseline performance.

Nonetheless, this method has also been implemented to benefit

from parallel computing, so its rate of the evaluation of

candidate solution is high. To the best of the authors’ knowledge,

the tuning of spiking neural models of striatum plasticity has not

been studied from this perspective before. Hence, the ultimate

goal of this research is to recommend the most effective strategy

to save tedious trial-and-error procedures and hyper-parameter

tuning for spiking neural networks (SNNs) by hand in general,

which is inherently biased by the expert.

The rest of the paper is structured as follows: Section

2 describes materials and methods. Section 3 contains the

experimentation and results. Finally, Section 4 shows the

conclusions and states future work.

2. Materials and methods

This section starts with a detailed description of the

computational models that define the agent behavior and the

task it is solving. After that, the four optimization strategies

considered are explained.

2.1. Computational models

For the networkmodel, we used conductance-based versions

of the leaky-integrate and fire (LIF) neuronmodel (Gerstner and

Kistler, 2002). LIF model simplifies many aspects of neuronal

dynamics, thus it is more computationally efficient than other

commonly used neural models in SNNs. We used this model

in every layer of the network. Before the use of optimization

methods, the parameters were manually tuned to obtain

reasonable firing rates (see details in Supplementary materials).

The STR neurons are divided into D1 or D2 populations,

each one with different learning kernel constants (so they can

learn to respond to different situations; more on this later)

and also divided by channels (one per action). STR D1 and

D2 populations are complementary, as the D1 population tries

to learn what action it has to do, while D2 population tries

to learn what action it has to stop. The action neurons are a

population that integrates its channel activity and outputs the

behavior of the agent, and they are tuned to fire every input

cycle if they receive enough stimulation (at least two more

spikes from D1 neurons than D2 neurons each cycle). The

dopamine neuron was tuned to have a firing range from 50 to

350 spikes per second, with these unrealistic values chosen to

improve computational performance (instead of simulating a

bigger dopaminergic population).

The input generation procedure is described in Gonzalez-

Redondo et al. (2022) and based on Masquelier et al. (2009),

Garrido et al. (2016). The agent perceives the environment as

2,000 analog inputs. These inputs are fed one-to-one to an input

layer of LIF neurons as currents (Figure 1B), altogether with

an oscillatory drive. This oscillatory drive leads to a current-

to-phase conversion: the neurons that receive the strongest

analog input currents will fire first during the phase of the

cycle (Masquelier et al., 2009). This way, we encode analog

inputs in specific spatio-temporal spike activity patterns. This

is called phase-of-firing encoding and represents information in

the spike times of neurons relative to the phase of a background

oscillation (in our case, the oscillatory drive). New input stimuli

are presented at uniformly distributed random intervals of 200–

500 ms. The stimulus can be a repeating pattern or noise, and

both are generated randomly depending on the simulation seed.

When presenting a repeating pattern, only half of the input

neurons (1,000) are pattern-specific, while the other half receives

random current values. When no pattern is presented, all the

input neurons receive random current values.

The network model (Figure 1A) contains two channels.

Every channel contains two parallel layers (STR D1 and D2

neurons, respectively) of striatal-like neurons with asymmetrical

structured lateral inhibition (as in Burke et al., 2017) within

and between STR D1 and D2 populations. The output of each

channel is an action node that integrates the channel activity

to decide if the agent takes an action or not. The agent can do

none, both, or any of them at a time. A dopaminergic neuron

projects its activity to both action channels as a neuromodulator

(dopamine) determining what the agent should learn from the

recent past experience. An environment reward signal (based on

the chosen and the expected action) is delivered to this neuron

as excitatory (rewards) or inhibitory (punishments) inputs.

The neurons in each channel receive plastic synapses from

the input layer. The STDE (Gurney et al., 2015) learning rule

is used, a modification of a reward-modulated STDP learning

rule where the kernel constants are dopamine-dependent (that

is, different values are defined for low dopamine and high

dopamine values, see Figure 2). This rule also uses eligibility

traces to store the potential changes, similarly to Izhikevich

(2007). The learning kernels are different for STR D1 and D2
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FIGURE 1

Cortico-striatal network solving a reinforcement learning (RL) task (from Gonzalez-Redondo et al. 2022). (A) Structure of the network. (B–F) The
activity of the network during the last 5 s of simulation. Background color indicates the reward policy (yellowish colors, action A is rewarded and
B is punished; bluish colors, action B is rewarded and A is punished; gray, any action is punished). (B) Input pattern conveyed to the input layer.
(C) Raster plot of the channel-A action neurons. Yellow dots represent STR D1 spikes, and orange dots are STR D2 spikes. (D) Raster plot of
channel B. Cyan dots represent STR D1 spikes, and dark blue dots are STR D2 spikes. (E) Action neuron firing rates. The middle horizontal line
represents 0 Hz. Action A and B activities are represented in opposite directions for clarity. Action A neuronal activity increases in yellow zones
while action B neuronal activity in cyan intervals. (F) Firing rate of the dopaminergic neuron (black line). Dotted horizontal lines indicate the
range of dopamine activity considered: black is the baseline, green is the maximum reward, and red represents the maximum punishment. Dots
indicate rewards (green) and punishment (red) events delivered to the agent. (G) Evolution of the learning accuracy of the agent, see Section 2.1
for further details. The dotted line marks the accuracy level by chance.

neurons, as their biological counterparts respond to different

situations (Gerfen and Surmeier, 2011): D1 neurons are more

predominant in the direct pathway of the BG, which tend

to promote behavior when it is active. D2 neurons are more

predominant in the indirect pathway of the BG, which tends

to inhibit behavior when it is active. For this reason, the initial

learning kernels were manually chosen to be complementary:

D1 neurons learn to do actions, and D2 neurons learn to

stop actions. The dopaminergic modulatory signal is global

and delivered to every STDE connection from the input layer

to channel neurons. Lastly, two homeostatic mechanisms are

added to improve the learning process: first, the synapses

implementing the STDE included a non-Hebbian strengthening

in response to every pre-synaptic spike. Second, we included

adaptive threshold to our neuron models based on Galindo et al.

(2020).

The agent has to learn a simple mapping task from stimulus

to action. Every 200–500 ms, a new stimulus is presented, and

the agent has to respond with the appropriate action. There are

five different repeating patterns, and the agent has two possible

actions to choose, A or B. Two patterns require action A, the

other two patterns require action B, and the fifth pattern requires

to do nothing. If the agent responds correctly, the environment

gives a reward. If a different action is taken, a punishment is

given. If the input is just noise, the environment does not give

rewards or punishments.
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We used a confusion matrix to help measure the

performance of the model. Each row indicates the rewarded

action in response to the presented pattern, and each column

indicates the selected action in response to the presented pattern.

Every cell mij then counts the number of occurrences of j

action being done when i action was expected to be done.

We only considered in the calculation those trials in which

some reward or punishment can be delivered, ignoring those

intervals with only noise as the stimulus. We considered that

an action has been taken if the corresponding action neuron

has spiked at least once during the pattern presentation, and

conversely, we consider that no action has been taken if none

of the action neurons spikes during the same duration. By doing

so, we obtained a confusion matrix, widely used in classification

problems when the objective is to describe the accuracy of a final

map process (Stehman, 1997). The confusion matrix is defined

as in expression (1),

C ≡













m11 m12 · · · m1C

m21 m22 · · · m2C
...

...
. . .

...

mC1 mC2 · · · mCC













(1)

where mij represents the number of occurrences belonging

to the i-th class (the rewarded action) but classified as members

of the j-th class (the selected action).

We then measured the model’s performance as the accuracy

of the classification, which is defined as the sum of the number

of correct predictions (the trace of the matrix) divided by the

total number of pattern presentations considered (the sum of the

whole matrix). In order to measure the evolution through time

of the performance of the models, we calculated the confusion

matrix for each pattern presentation and then used a rolling

mean of the last 100 values to obtain an estimation of the

temporal evolution of the accuracy.

2.2. Model tuning as an optimization
problem

In this context, it is possible to measure the performance of

the model resulting from any set of parameters as the accuracy,

F, of the classification, according to Equation (2). This value is

defined as the sum of the number of correct predictions (the

trace of the matrix) divided by the total number of pattern

presentations considered (the sum of the whole matrix). To

measure the evolution through time of the performance of the

models, we calculated the confusion matrix for each pattern

presentation and then used a rolling mean of the last 100

values to obtain an estimation of the temporal evolution of

the accuracy.

TABLE 1 Parameters to tune for the neural model and their allowed

ranges.

Variable Lower bound Upper bound Unit

wmax 10−3 10−1 µS

Cpre −10−5 10−5 µS

µ 5 · 10−4 5 · 10−2 -

τth 1 200 s

Cth 10−2 2 mV

kd1
+
hi −1 1 -

kd1
−
hi −1 1 -

kd1
+
lo −1 1 -

kd1
−
lo −1 1 -

kd2
+
hi −1 1 -

kd2
−
hi −1 1 -

kd2
+
lo −1 1 -

kd2
−
lo −1 1 -

F =

∑

imii
∑

i

∑

jmij
(2)

The value of F was ultimately dependent on 13 variables,

a selected subset of all the variables of the model, which

determined the model behavior. Notice that the model features

inherent stochasticity, which is handled by returning the average

of five simulations. The variables are shown in Table 1, including

their corresponding ranges. These variables have been chosen to

be optimized as they are the ones related to the learning process

of the model. We did not optimize the neuronmodel variables as

we already found reasonable values to make their firing behavior

match their biological counterparts. Variable wmax represents

the maximum weight of each plastic synapse. Variable Cpre is

the homeostatic term applied per presynaptic spike. Variable τth

is the time constant of the adaptive neuron threshold. Variable

Cth defines the additive increment of the adaptive threshold of

a striatal neuron after a spike, and it is inversely proportional

to the target firing rate. Variable µ is a dimensionless constant

that modulates all learning parameters. Lastly, the kernel shape

of the STDE learning rule is defined by the parameters kSPKDA with

SPK ∈ {+,−} being the spike order pre-post for applying k+DA
and post-pre for applying k−DA, respectively, and DA ∈ {hi, lo}

being the high- or low-DA cases, resulting in four parameters

per neuron population: k+
hi
, k+

lo
, k−

hi
and k−

lo
. As we have two

neuron populations POP ∈ {d1, d2}, there are eight kPOP
SPK
DA

STDE parameters in total: kd1
+
hi
, kd1
+
lo
, kd1
−
hi
, kd1
−
lo
, kd2
+
hi
, kd2
+
lo
,

kd2
−
hi
, and kd2

−
lo
. A graphical representation of all these kernels

for the manually-tuned case can be found in Figure 2.

Based on this quality metric and the variables involved,

model tuning can be expressed as an optimization problem. It

focuses on finding the values of the parameters (within their
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FIGURE 2

Manually-tuned kernels used for spike-timing-dependent eligibility (STDE) synapses of MSN D1 (left) and D2 (right), showing the weight change
depending on the time di�erence between pre- and post-synaptic spikes and dopamine. Lines represent kernels at dopamine minimum and
maximum values (red and green, respectively).

feasible range) that maximize the value of F, which becomes the

objective function in optimization terms. The problem can be

formulated according to Equation (3). For simplicity, only the

first and the last variables are shown. The constraints keep every

variable in its feasible range, which results in a box-constrained

problem (Costa and Nannicini, 2018; Stripinis and Paulavičius,

2022). The max and min superscripts linked to each parameter

symbol denoted its upper and lower bounds, respectively. The

numerical values are those shown in Table 1.

maximize
wmax ,...,kd2

−
lo

F(wmax, . . . , kd2
−
lo
)

subject to wlower
max ≤ wmax ≤ w

upper
max

. . .

kd2
−,lower
lo

≤ kd2
−
lo
≤ kd2

−,upper
lo

(3)

Notice that the problem is defined as a maximization one,

but optimization methods traditionally aim at minimization.

Regardless, this is not relevant, because converting a

maximization problem into a minimization one is trivial.

It is only necessary to multiply the objective function by –1, i.e.,

maximizing F(. . . ) is equal to minimizing−F(. . . ).

2.3. Optimization methods

As introduced, evaluating the objective function relies

on non-deterministic simulations and is computationally

demanding. Thus, the methods considered are designed for

black-box optimization (Audet and Hare, 2017), i.e., RBFOpt

(Costa and Nannicini, 2018), SurrogateOpt (Matlab, 2021),

DIRECT-GL (Stripinis et al., 2018), and a random search (Cruz

et al., 2018). The first three, which are also the preferred

options, have been explicitly designed to require some function

evaluations. All of them are prepared for exploiting parallel

computing. Finally, it is relevant to highlight that among the

considered methods, DIRECT-GL is the only deterministic one,

which means that the algorithm does not rely on randomness

and always returns the same result for the same problem

instance and configuration.

2.3.1. RBFOpt
RBFOpt, published in Costa and Nannicini (2018), is

an open-source library written in Python for black-box

optimization with computationally-expensive objective

functions. This tool is based on the method proposed by

Gutmann (2001).

RBFOpt belongs to the family of surrogate optimization

methods. The fundamental idea of surrogate optimization is

that the process relies on iteratively building an approximate

model (response surface or surrogate model) of the real

objective function. While the former approximates the latter,

its computational requirements are expected to be significantly

lower, and the accuracy can improve as the information on the

target function increases with the points evaluated (Vu et al.,

2017). For building the surrogate model, RBFOpt uses radial

basis functions, whose output depends on the distance between

the input and a given reference. In this field, Gutmann (2001)
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TABLE 2 Frequent radial basis functions.

φ(r) Type Minimum degree

r Linear 0

r3 Cubic 1

r2 log r Thin plate spline 1

was a pioneer in using radial basis functions for optimizing

computationally demanding black-box functions (Costa and

Nannicini, 2018).

Let f (x) be an abstract objective function of form f :RN →

R, where x ∈
[

xmin, xmax
]

, and xmin, xmax ∈ R
N , i.e.,

the corresponding lower and upper bounds of each decision

variable. Notice that this can be seen as a generalization of the

particular problem formulation in Equation (3). For K different

points of the search space, x1, . . . , xK , with known values, y1 =

f (x1), . . . , yK = f (xK ), the associated radial basis function

interpolant, sK , has the following structure as the sum ofK radial

basis functions (Vu et al., 2017; Costa and Nannicini, 2018):

sK (x) =
K

∑

i=1

λiφ (‖x− xi‖)+ p(x) (4)

where φ :R+ → R, which is a radial basis function,

λ1, . . . , λK ∈ R acting like weights of the model, and p(x)

is a polynomial. The minimum degree of p to guarantee

the existence of the interpolant depends on the form of φ.

Table 2 contains three common radial basis functions for a

generic input, r. It also includes the minimum degree of their

accompanying polynomial p that ensures the existence of the

interpolant. If these components are appropriately configured,

the desired radial basis function interpolant can be efficiently

computed by solving a linear system to find the unknown

parameters, such as the weights. For instance, x1, . . . , xK should

be pairwise distinct (Vu et al., 2017; Costa and Nannicini, 2018).

The general procedure applied by optimization methods

using radial basis functions follows Algorithm 1 (Costa and

Nannicini, 2018). A particular method will define a strategy

to implement these generic steps, starting from selecting the

initial points. For example, for low-dimensional problems, a

valid approach is to choose the corners of the search space.

Another one is to pick the corners and the central point.

Controlling the effort put into improving the accuracy of the

surrogate model and finding the best point with the current

model is also critical. The method by Gutmann (2001) defined

a measure of the bumpiness of the surrogate model for this

purpose. Their method assumes that the real objective function

does not oscillate excessively, thus when configuring models

and considering new points, the smoother (or “least bumpy”)

interpolant is preferred (see Figure 3, which assumes four known

points and a hypothetical target value of the cost function).

FIGURE 3

Depiction of two surrogate models interpolating four points
(blue circles) and reaching a target value (horizontal dashed
line). The green solid-line model is considered more likely than
the red dashed-line one since it is smoother. In other words, the
method by Gutmann (2001) assumes that it is more likely that
the point tagged with a diamond exists (green line) rather than
that with a square (red line) in the real function (Costa and
Nannicini, 2018).

Regardless, describing these aspects in detail is out of the scope

of this paper. Refer to the work by Vu et al. (2017) to have a

detailed overview and that by Costa and Nannicini (2018) to

understand the fundamentals of RBFOpt.

1: Initial step - Select K points

2: while There is available function evaluations

do

3: Compute the radial basis function interpolant

4: Decide between improving the surrogate model

and finding the best point using the current

model.

5: Determine the next point to consider

according to the previous decision

6: Evaluate the objective function at the new

point

7: end while

8: return Best point found

Algorithm 1. Generic global optimization through radial basis

functions

In this context, RBFOpt has two main contributions. The

first is an automatic model selection component. The second

is the support for using faster yet less accurate variants of the

objective function. The latter is especially appropriate for the

target problem since the simulation-related parts of the objective

function, such as the training time and the seeds, are adjustable.

They can be modified by the expert in charge of model

tuning to reduce time at the expense of losing accuracy. These

properties, along with its open-source nature, the compatibility

with parallel computing, and the good results reported in
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Costa and Nannicini (2018) motivated its consideration for the

present work.

2.3.2. SurrogateOpt
SurrogateOpt is a solver for computationally-demanding

black-box optimization problems provided by the Global

Optimization Toolbox (López, 2014) of Matlab (2021) since its

version R2018b. As introduced, it belongs to the same group as

RBFOpt since the method is a surrogate optimization algorithm.

SurrogateOpt also uses radial basis function interpolators. Its

documentation motivates this decision by highlighting that they

support any number of dimensions and are computationally

cheap to construct, evaluate, and extend. This tool is mainly

based on the algorithm proposed by Regis and Shoemaker

(2007). It has been selected due to its effectiveness, simplicity of

use, and compatibility with parallel computing.

Conceptually, SurrogateOpt follows a scheme similar to

Algorithm 1. The fundamental differences correspond to the

implementation of each step and specific definitions. In this

regard, SurrogateOpt has a rich set of associated concepts

and procedures, which are summarized below. According to

its official documentation, the method alternates between two

stages: constructing surrogate and searching for minimum.

The change between them occurs after what is called the

surrogate reset.

In the first stage, the method builds a surrogate of the real

objective function. For this purpose, it interpolates a radial basis

function through a set of points whose value must be computed

with the real yet computationally demanding objective function.

SurrogateOpt uses a cubic radial basis function with a linear

tail, which minimizes the concept of bumpiness (Gutmann,

2001), previously mentioned when describing RBFOpt. In the

beginning, the solver computes and evaluates a user-given

number of random points distributed adequately within the

bounds. It can also start from a user-given set of points of

known value. In later executions of this stage, the software

package will create and evaluate a parameter-defined number of

random points. As explained for RBFOpt, building the desired

interpolant involves solving a linear system of equations.

In the second stage, SurrogateOpt looks for a minimum

of the objective function using a procedure that resembles a

local search. More specifically, the method defines a search

region radius, known as the scale, whose initial value is 0.2.

It starts from the best point since the last surrogate reset,

i.e., the one with the smallest objective function value. This

point is called the incumbent point. The search then focuses

on finding a minimum of merit function that relates the

surrogate and the distance from the points evaluated with the

real objective function. This approach aims to find a trade-

off between minimizing the surrogate, which is not the real

objective function and is potentially less accurate, and evaluating

new points accurately.

Mathematically, the definition of the merit function for any

point x combines two weighted terms, the scaled surrogate,

S(x), and the scaled distance, D(x). Being smin and smax, the

minimum and maximum surrogate values of the sample points,

respectively, and s(x) that of the considered point, the scaled

surrogate is defined as follows Matlab (2021):

S(x) =
s(x)− smin

smax − smin
(5)

S(x) is non-negative and zero at points having minimal

surrogate values among sample points. Concerning the scaled

distance, it is defined as follows:

D(x) =
dmax − d(x)

dmax − dmin
(6)

where dmin and dmax are the minimum and maximum

distances from a sample point to any evaluated one, respectively,

and d(x) is the minimum distance of the point x to an

evaluated one. D(x) is non-negative, and zero at points at the

furthest distance from evaluated points. Hence, minimizing

D(x) orientates the algorithm toward regions separated from

evaluated points. The merit function is a convex combination

of both parts according to the following structure:

wS(x)+ (1− w)D(x) (7)

where w is a weighting factor between zero and one. The

greater it is, the most effort is put into minimizing the surrogate

model. Analogously, the smaller it is, the most interest is in

exploring new regions. This weighting factor cycles through the

following values, according to Regis and Shoemaker (2007): 0.3,

0.5, 0.8, and 0.95.

During the search, the solver adds multiple (up to

thousands) random vectors to the incumbent point to generate

sample points. The vectors are shifted and scaled by the bounds

in each dimension and ultimately multiplied by the scale. The

sample points must also respect the problem bounds. Then,

the merit function is evaluated at all of them further than a

parameter-defined distance from any point previously evaluated.

The one featuring the best (lowest) value of the merit function

becomes an adaptive point. The real objective function will be

ultimately computed at it, which will be used to update the

surrogate model and assess the real gain from the incumbent

value. If the real value of the adaptive point is significantly

better than the current incumbent point, the former replaces

the latter, and the search is considered successful. Otherwise, the

incumbent point remains unaltered, and the search is classified

as unsuccessful.

The scale of the search changes when one of the following

conditions are met:

1. There have been three successful searches since the last scale

change.
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2. There have been either five or the number of problem

variables (whichever is greater) unsuccessful searches since

the last scale change.

If the first condition is met, the scale is doubled (up to a

maximum length of 0.8 times the size of the box defined by the

problem bounds). If the second situation occurs first, the scale

is divided by two (without becoming lower than 1e−5 times the

size of the box defined by the problem bounds). By proceeding

this way, the search ultimately focuses near an incumbent point

featuring a small objective function value.

After considering all the new sample points further than

a minimum distance from the evaluated points, the search for

minimum phase ends to go back to the construct surrogate one,

i.e., resetting the surrogate model. This phase change generally

occurs after reducing the scale until all sample points are closely

around the incumbent point.

2.3.3. DIRECT-GL
DIRECT-GL, proposed by Stripinis et al. (2018) and Stripinis

and Paulavičius (2022), is an enhanced version of a popular

method, DIRECT (Jones and Martins, 2021). This new variant

is designed as a modification of a specific part of the original

method. Hence, it is convenient to start by describing the initial

DIRECT and its framework, inherited by the new one.

DIRECT was proposed by Jones et al. (1993) as a

modification of Lipschitzian Optimization that did not require

specifying a Lipschitz constant, i.e., a bound on the rate

of change of the objective function, which cannot be easily

computed in real problems (or it may not exist). Aside from

keeping a deterministic behavior, the method was simpler,

converged faster, and featured a certain degree of compatibility

with parallel computing. It was later revised by Jones (2001)

to handle not only box or domain constraints and continuous

variables but also nonlinear inequality constraints and integer

variables. From the beginning, this method was conceived for

black-box optimization and situations in which the objective

function was time-consuming.

Global optimization algorithms must find a trade-off

between exploration and exploitation of the search space

(VanGeit et al., 2008). The first term refers to finding unexplored

regions, and the second represents the capacity to find the best

solution in a known zone (global and local search capabilities,

respectively). In Lipschitz optimization, the Lipschitz constant

is treated as a weighting factor determining howmuch emphasis

to put into global over local search by indicating where to split

the search space into sub-regions. This value must equal or

exceed the maximum rate of change of the objective function,

so conservative configurations excessively focus on global

search. It also makes these methods slow to converge because

modifying the value at search is challenging. In contrast to

them, DIRECT couldmaintain the scheme of dividing the search

space and autonomously prioritizing the regions to explore by

virtually considering all possible constants. The division was also

independent of the number of dimensions, so the algorithm

was more scalable with the problem dimensionality (yet not

recommended for more than 20 variables Jones, 2001).

More specifically, DIRECT starts by normalizing each

variable to [0, 1] so that the search space becomes the

unit hypercube. Then, the method proceeds by dividing it

into sub-rectangles. This scheme determines the name of the

method, since DIRECT comes from ‘DIviding RECTangles’.

The rectangles are represented by the value of the objective

function at their center, which avoids the effect of problem

dimensionality: rectangles only have one center independently

of the dimensions. It is also relevant to highlight that the referred

division is a trisection in reality, which allows keeping the focus

on the original rectangle without further re-evaluation, i.e., its

center stills refer to a different region. Figure 4 depicts these

ideas assuming a 2D search space and two divisions (trisections).

The fundamental aspect of DIRECT is how the rectangles are

selected for division and further exploration at each iteration.

This selection is deterministic and theoretically considers

every possible balance between exploration and exploitation

(Lipschitz-like constant). As detailed in Jones (2001), a pure

global method would always select the widest rectangle. A pure

local one would opt for the one with the best value at its center.

The former avoids overlooking the promising regions, while the

latter promotes that.

DIRECT does not force itself to select just one rectangle,

which would require parameters to tune. Instead, the method

computes all the weightings of local vs. global search. For this

purpose, it defines the size of any rectangle as the distance

between its center and one of its vertices. Then, for every

selection at a particular iteration, the method represents all the

available rectangles depending on their size and the value of their

center. After that, it proceeds to select those in the low-right

convex hull. Figure 5 depicts this idea assuming a minimization

problem. The selected rectangles are the balanced options

between local and global search considering the central value

and size of the corresponding regions. Notice the similitude of

this approach to computing the Pareto set as the solution to a

multi-objective optimization problem (Filatovas et al., 2017).

Interestingly, as explained in Jones (2001) and also shown

in Figure 5, the selection of rectangles can be alternatively

derived from the rate of change of the function in each.

If one knows the optimal value, anchors a half-line at it,

and swings the free extreme upwards, the first dot touched

represents the rectangle with the most reasonable rate of

change, i.e., gradual instead of steep, to contain the optimum.

Hence, that rectangle must be selected. In reality, the optimal

value is not usually known. However, it is possible to repeat

this process from the best value known so far, as the

optimal value will be equal to or lower than it, to minus

infinity. Selecting the touched dot for each anchored point
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FIGURE 4

Main aspects of dividing rectangles (DIRECT) and its search space after two iterations. At the beginning of the initial iteration, point A is the first
evaluated and represents the first and only rectangle (square) defined by the search space. It is trisected and results in the rectangles defined by
points B and C. At the second iteration, the rectangle defined by point C is selected and trisected resulting in rectangles defined by points D
and E.

FIGURE 5

Selection of rectangles to further explore (divide) in DIRECT for a hypothetical minimization problem. The available rectangles are represented
as dots (circles are shown for clarity). The horizontal axis corresponds to the size of each rectangle, and the vertical one shows the value of the
objective function at its center (lower is better for minimization). In this context, rectangle A is the one with the best central value, while B
encompasses the broadest region. The rectangles selected will lie in the lower-right convex hull, which represents the optimal balance between
exploration and exploitation. The red lines at the bottom show an alternative way to derive this selection method: a line is anchored at every
value better than known, starting from that one minus the desired accuracy (minimum relevant change), ǫ, and swept upwards until reaching a
rectangle. Repeating the process to (negative for minimization) infinity results in the same convex hull (and avoids regions with expected
negligible improvements).

results in the lower-right convex hull previously defined. It

is hence possible to obtain the same selection scheme yet

by thinking differently. Besides, it is possible to subtract

an arbitrary value, ǫ, to the best value known to discard

from the hull the rectangles with negligible improvements.

Accordingly, DIRECT only expects as input the maximum

number of function evaluations and the constant ǫ, which can

be seen as the desired accuracy of the solution. The interested

reader can refer to Jones (2001) for further information about

this algorithm.
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Despite its good properties (conceptual simplicity, ingenious

deterministic exploration, and requiring a single parameter),

DIRECT is not free of potential drawbacks, and researchers have

proposed numerous variants (Jones and Martins, 2021; Stripinis

and Paulavičius, 2022). The two main flaws of the initial method

are (Stripinis and Paulavičius, 2022) i) the potential waste of

function evaluations in sub-optimal regions for functions with

many local optima and ii) the slow convergence rate even after

having identified the basin of the global optimum (Jones and

Martins, 2021). Accordingly, themethod selected for this work is

one of the revised versions of DIRECT, i.e., DIRECT-GL, which

tries to overcome both (Stripinis et al., 2018).

For this purpose, the authors of DIRECT-GL modified the

selection of rectangles to consider more than its ancestor. The

process has two stages and fits into the original framework

without requiring extra parameters. The first one enhances the

global search component of the method, represented by the

letter ‘G’ in its name. It starts by adding the rectangles with

the best central value and prioritizing those that are bigger.

This approach results in more rectangles of medium size and

the best values. The second phase is similar, but it considers

the Euclidean distance to the best point known so far instead

of the objective function value. Namely, it tries to add more

hyper-rectangles close to the current minimum. This strategy

strengthens the exploration of the most promising area, i.e., it

enhances the local search aspect of the method, represented by

the letter ‘L’ in its name.

Aside from the computational studies in Stripinis et al.

(2018), the effectiveness of this strategy is supported by the

recent comparison in Stripinis and Paulavičius (2022), where

DIRECT-GL exhibits the best performance among all the

DIRECT-based methods. The implementation in Stripinis and

Paulavičius (2022), also used in this work, unifies the results

of both stages in a single selection. This aspect differs from

the original work to make the method more suitable for

parallelization and more effective.

2.3.4. Random search
A pure random search procedure is arguably the simplest

global optimizer (Brooks, 1958), and it belongs to the stochastic

family of optimization methods (Cruz et al., 2018). More

specifically, it consists of randomly generating solutions in the

search space while keeping a record of the best one found so

far. Algorithm 2 describes this process in detail. Notice that it

is expressed in general terms, and the comparison criterion is

dependent on whether the objective function is to be minimized

or maximized.

Despite its simplicity, this method converges to a global

optimum when the number of allowed evaluations tends

to infinity (Brooks, 1958). On the one hand, its practical

applicability is low due to the lack of orientation during the

search. For this reason, it has been initially selected for the

Require: Objective function: f, Evaluations

allowed: evals

1: solution← ∅

2: currentVal← worst value

3: iter← 0

4: while iter < evals do

5: point← random()

6: if f (point) is better than currentVal then

7: solution← point

8: currentVal← f (point)

9: end if

10: iter← iter+ 1

11: end while

12: return solution

Algorithm 2. Random search

problem at hand as the expected baseline reference, especially

considering that the computational cost of the objective function

makes it difficult to work with high evaluation budgets. Thus, the

previous methods are expected to outperform this one because

of their sophisticated components to explore and exploit the

search space (Van Geit et al., 2008). On the other hand, the

simple structure of this procedure, which is also embarrassingly

parallel in terms of high-performance computing (Trobec

et al., 2018), ensures a high rate of solution evaluations in an

appropriate computing platform. Hence, its results can be of

interest depending on the ultimate problem difficulty and the

quality requirements.

3. Experimentation and results

3.1. Problem-specific setup and
reference value

A sample tuning problem of a spiking neural model of

striatum plasticity has been addressed to assess the performance

of the considered optimization methods. The problem was

selected due to its high number of parameters, biological

relevance, and computational cost of evaluating solutions. The

model details are in Gonzalez-Redondo et al. (2022), and the

important problem-specific setup is summarized below.

The simulation time was 500 s, enough for the hand-tuned

models to converge to a solution. The model contains 2,000

LIF input neurons and 16 spiking LIF output neurons with an

adaptive threshold divided into two channels (one per possible

action). During the learning protocol, five different repeating

stimuli were used, besides noise. The duration of each stimulus

is taken from a uniform random distribution between 100 and

500 ms. Five different random seeds were used for every set of

parameters tested and the resulting fitness of each seed averaged.
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The best result obtained without optimization methods is

shown in Figure 1. Panels C-F shows network activity and

rewards/punishments during the last 5 s of simulation. The most

relevant information is accuracy through the training process.

The mean of the last 100 s of the accuracy is used as the

fitness for the objective function. The procedure to calculate the

accuracy is described in Section 2.1. The accuracy evolution of

the best result obtained by an expert after manually tuning for

2 months the parameters using a trial-and-error procedure is

shown in Figure 1G. Good sets of parameters typically plateau

after 400 s, as wrong actions are taken from time to time even

with further training.

3.2. Computational setup

The computational platform used belongs to the high-

performance computing cluster of the Supercomputing—

Algorithms research group from the University of Almería,

Spain. Specifically, up to 8 Bull Sequana X440-A5 nodes were

used to launch different executions. Every node features 2 AMD

EPYC Rome 7,642 with 48 cores each, i.e., 96 cores in total,

512 GB of RAM, and 240 GB SSD as its main disk. In a

core of one of these nodes, evaluating a candidate solution or

set of model parameters for the configuration described above

takes 1.78 ± 0.12 h on average. This value has been computed

by generating and evaluating 96 random feasible parameter

sets. The software environment consists of Matlab 2020b for

SurrogateOpt, DIRECT-GL, Random Search, and Python 3.6.8

for RBFOpt.

Two computational budgets have been considered, 300

and 600 function evaluations. The first results from taking

into account the estimated run time as follows: Since each

evaluation takes 1.78 h on average using a high-end processor,

300 evaluations should take 300 × 1.78 = 534 h at least, i.e.,

22 days approximately. This estimation assumes a sequential

execution workflow, as a human expert will likely proceed, and

neglects the overhead associated with the internal computations

of the optimizers. The value of 22 days of work is in the same

order of magnitude as the most favorable conditions found by

the authors of this paper when doing the referred model fitting

by hand. Similarly, the value of 300 function evaluations is equal

to the budget used by RBFOpt by default. Concerning the second

limit used, 600, it has been adjusted to two times the lower value.

By proceeding this way, it will be possible to assess the benefits

of doubling the effort. This value would also be close to the

maximum function evaluations that Surrogateopt would assign

to the problem at hand, namely, 50× 13 = 650 according to the

official documentation.

The sequential run time estimations would be 22 and

44 days, approximately. The former, for 300 evaluations, was

demanding, but the latter, for 600, started to be overwhelming

for a person. Nevertheless, when automating the process by

using optimizers compatible with parallel computing and there

is access to a cluster, both conditions met in this work, the run

time can be significantly lower. Ideally, by deploying 96 threads,

the objective function evaluation time could be reduced by a

factor of up to 96. This speedup would mean turning the 534 h

turn into 5.56, approximately. In general, the perfect speedup is

achieved rarely. Spawning and managing concurrent execution

units comes at a cost, sequential tasks do not benefit from

them, and there might not always be enough work for all (e.g.,

few hyper-rectangles selected by DIRECT-GL at a particular

iteration). Regardless, the time taken by the optimizers in the

cluster is expected to be significantly lower than estimated above

for sequential execution.

Apart from controlling the number of function evaluations

allowed, the four solvers were configured with their default

options. This included configuring RBFOpt to use the Bonmin

(Bonami et al., 2008) and Ipopt (Wächter and Biegler, 2006)

solvers (Costa and Nannicini, 2018) for addressing the internal

sub-problems that arise (e.g., adjusting the radial basis function

interpolants). Aside from this, notice that RBFOpt stands out

by being capable of using a less accurate yet faster version

of the objective function. Working with it requires both the

referred kind of function and the lower and upper bounds of

the expected error. To accelerate the neural model assessment,

i.e., the objective function, the number of simulation seeds has

been reduced from 5 to 1, which should make its computation

five times faster on average.

The inaccuracy estimation has been computed as follows: 8

cluster nodes with the same specifications as defined above were

used to generate 26,880 feasible configurations randomly. Then,

the SD of the objective value for each one of the five simulation

seeds was recorded. The average SD between seeds for the same

configuration was approximately 0.03. Then, according to the

empirical rule of Statistics, this average SDwasmultiplied by 3 to

cover 99.7% of the values assuming a standard distribution. The

result is 0.09, which was ultimately rounded up to 0.10 to add

an arbitrary extra margin. Accordingly, the inaccurate yet faster

function is passed to RBFOpt considering that the real value (if

5 simulations seeds were considered instead of 1) will be in the

range of±0.10 plus the inaccurate estimation.

3.3. Numerical results

Table 3 contains the results for the model tuning problem

addressed with each optimizer and function evaluation budget.

The first column shows the optimization algorithm. The second

one displays the number of function evaluations allowed.

The values generally refer to the standard function with five

simulation seeds. However, the two last cases of RBFOpt

combine the full function with the one featuring a single

simulation seed to be faster despite reducing its accuracy. They

include the word ‘fast’ to highlight this aspect. It is noted that
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TABLE 3 Performance metrics for each optimizer and configuration considered computed with the results of 20 independent executions.

Optimizer
Function

evaluations

Average

fitness

Standard

Deviation

Confidence

Interval (95%)

Average run

time (h)

SurrogateOpt 300 0.7269 0.0667 [0.6957, 0.7581] 6.07

600 0.7699 0.0691 [0.7376, 0.8022] 11.26

RBFOpt 300 0.5325 0.1461 [0.4641, 0.6009] 6.85

600 0.6267 0.1434 [0.5596, 0.6938] 13.27

200 + 500 fast 0.5843 0.1458 [0.5161, 0.6525] 5.30

500 + 500 fast 0.5923 0.1550 [0.5198, 0.6648] 12.29

DIRECT-GL 300 0.4165 - [0.4165] 81.98

600 0.4618 - [0.4618] 103.38

Random Search 300 0.5492 0.1412 [0.4831, 0.6153] 5.56

600 0.6159 0.1027 [0.5678, 0.6640] 11.13

dividing the fast term by 5 and adding it to the standard one

results in the same budgets considered, i.e., 300 and 600 standard

function evaluations. In the beginning, the second configuration

of this type for RBFOpt consisted of 400 complete evaluations

and up to 1,000 fast ones, but the results were worst, and the

solver opted for not executing that many fast evaluations. Thus,

it seems preferable to put more emphasis on complete ones even

though the estimated cost is theoretically equivalent, and we

ultimately chose the configuration shown.

The following two columns contain the average efficiency

(higher is better, with the best value in bold font) and the

SD for each optimizer and configuration. All the stochastic

methods have been independently executed 20 times. With this

information, the 95% confidence intervals have been computed

according to the t-Student distribution considering the sample

sizes (i.e., under 30 records each). They are shown in the fifth

column. The sixth and last columns contain the average run

time for each case (the SD are omitted because of not being

either significant or especially relevant for this variable). For

DIRECT-GL, the run times have been obtained by launching

8 independent executions, one per available node. Finally, it is

relevant to mention that the RandomSearch results have been

obtained from the dataset with 26,880 random points used to

assess the accuracy of the fast version of the objective function.

More specifically, they come from taking 20 random samples

with as many instances as the function evaluation budget. Thus,

the run times of this method have been analytically estimated by

multiplying the average evaluation time by the computational

budget. They were ultimately divided by the number of CPU

cores due to the embarrassingly parallel nature of the process.

Concerning the results, the most noticeable aspect was that

DIRECT-GL showed the worst performance in terms of achieved

fitness and required run time. The aptitude of its solutions

for 300 and 600 function evaluations is even worse than that

obtained with the simplest method, i.e., RandomSearch. Both

results, i.e., 0.4165 and 0.4618, stay outside of the confidence

interval of this stochastic method, and below the lower bounds

for 300 and 600 function evaluations. The same occurs when

considering RBFOpt and its configuration with 300 evaluations.

Accordingly, the difference between thesemethods is statistically

significant. Its average run time is also significantly higher

than the rest, which comes from the fact that the parallelism

of DIRECT-GL is strictly bounded by the number of selected

rectangles at any point. For this reason, it will not always exploit

all the available CPU cores, which is critical in the context

of interest.

Conversely, SurrogateOpt stands out as the best-performing

method in terms of achieved fitness and a low SD. The lower

bound of its lowest confidence interval does not fall into the

range of any other one, so the observed difference between

these optimization strategies for the target problem is significant.

Besides, considering that the run time of RandomSearch

is an optimistic approximation, it could be said that the

computational performance is virtually equivalent. Accordingly,

the direct conclusion that can be drawn from the results shown

in Table 3 is that SurrogateOpt is the best solver for this kind

of model-tuning problem. Moreover, its average results are

comparable to that obtained by an expert after a tedious and

time-demanding model tuning process. More specifically, as

detailed in Section 3.1, the fitness of the expert-based model-

tuning was 0.7216, while the average of SurrogateOpt is 0.7269

with 300 function evaluations only. Nevertheless, one can

doubt the effectiveness of doubling the computational budget

for SurrogateOpt because the confidence intervals of both

cases overlap.

When confidence intervals do not overlap, the difference

between the two groups is statistically significant. However,

when they do, the difference might still be relevant Goldstein

and Healy (1995), Sullivan (2008). To avoid this uncertainty, the

confidence intervals for their difference will be computed. For

this purpose, as both samples have less than 30 instances, the t-

Student distribution will be used again. Notice that the following
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formulation assumes similar variances in the population, as it

occurs between both cases of SurrogateOpt. The pooled estimate

of the common SD, SP is computed as follows:

SP =

√

(n1 − 1)σ 2
1 + (n2 − 1)σ 2

2
n1 + n2 − 2

(8)

where n1 and n2 are the sample sizes of groups 1 and 2,

respectively, and σ1 and σ2 refer to their corresponding SD.

With this information, the confidence interval for the difference

between two means, x1 and x2, is obtained as follows:

(x1 − x2)± tSP

√

1

n1
+

1

n2
(9)

where t refers to the appropriate value from the t-Student

table (determined by the sample sizes, as introduced) for the

desired confidence level and n1 + n2 − 2 degrees of freedom.

It is noticed that the two terms after t define the standard error

of the difference in means between x1 and x2.

Back to the mean and SD of both configurations of

SurrogateOpt, the 95% confidence interval of their difference

is [-0.0865, 0.0005] according to 9. It defines a range of likely

values for the difference in means between both cases, x1 -

x2, where x1 is that of 300 function evaluations and x2 is

that of 600. Theoretically, since the interval contains the null

value, i.e., 0, it can be concluded that there is no statistically

significant difference between the average results of launching

SurrogateOpt with 300 and 600 function evaluations. Even if the

upper bound of this interval were slightly below zero, the average

difference could be perceived as negligible yet confirmed. That

said, in practical terms, since the outcome of this process is a

model parameter set with the highest possible fitness, it seems

reasonable to work with 600 function evaluations and several

independent runs whenever possible.

Regarding RBFOpt and RandomSearch, they remain

between the best performing solver, SurrogateOpt, and the

worst, DIRECT-GL. Being free to use without cost, unlike

SurrogateOpt, is their main attribute in this context. It is hard

to find the best option among them at a glance due to the

significant overlap and comparatively high SD. Technically,

RBFOpt offers the best average results when allowed to execute

600 function evaluations. Besides, the 95% confidence interval

of the difference between 300 and 600 function evaluations

confirm the effectiveness of doubling the computational effort,

yet it is arguably negligible. However, the difference with the

cases using fast evaluations is not statistically significant. The

same occurs when comparing RandomSearch and RBFOpt with

600 function evaluations. This close similarity indirectly benefits

RandomSearch, as it is the simplest strategy to apply, especially

when there is an available parallel computing platform.

3.4. Insight into optimization-based
model tuning results

The results of the optimization process yielded better

learning capabilities than those of manual tuning. Figure 6A

shows one of the best configurations found by SurrogateOpt, the

preferred method, in action, and compares it to the manually

tunned option. Although the manually tuned result plateaus

after 400 s, the optimized result continues to improve accuracy

after that point. In addition, the optimized result is more reliable,

as its SD is smaller.

Of the various parameters, the most interesting are the ones

that define the shape of the STDE kernels of the learning rule for

the neurons (MSN D1 and D2). Figure 6B shows the differences

between the manually tuned kernel and the optimized kernel.

While the manually tuned solution tends to use asymmetrical

kernels in every case, it seems that the optimized solution uses

symmetrical kernels for low DA and asymmetrical kernels for

high DA.

If we considered symmetrical kernels having values with

equal signs and asymmetrical kernels with opposite signs, this

is in accordance with the values obtained by Gurney et al. (2015)

in their exhaustive parametric search (Figure 11 in their article).

This could be relevant as they are considering more biological

constraints than this study. The only discrepancy is in the case

of high DA in MSN D2 neurons, where the optimized kernel

is reversed from the range obtained by Gurney et al. However,

further research is needed to better understand the significance

of these findings and the plausibility of the proposed parameters.

4. Conclusions and future work

This study addresses the tuning of spiking neural models

of striatum plasticity by using state-of-the-art black box

and surrogate optimization methods. This kind of model

is useful for understanding how the brain could perform

online RL, a fundamental ability that is essential for many

tasks such as motor control or decision-making. However,

tuning these models is a difficult task due to the high

dimensionality of the parameter space and the time required

for the simulations. In addition, experts are often biased

in their choices of parameter values. This problem can be

addressed as an optimization problem, which can be solved

using different methods.

This study makes a selection of optimization algorithms

designed for computationally-demanding objective functions

and compatible with parallel computing. The goal is to find the

best alternative to avoid the necessity of tedious and expert-

biased trial-and-error tuning of biologically realistic neural

models that require much time to be simulated. This approach

could automate model tuning despite not having been broadly

studied yet in this context. Automation will not only avoid
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FIGURE 6

(A) Comparison between one of the best results obtained with the SurrogateOpt optimization method (blue) with the best manually-tuned
result (orange), with the mean and SD (n = 5). (B) Comparison of parameters related with the STDE kernel.

potential errors and biased configurations, but it can also reduce

the required time from weeks to hours.

The solvers considered are SurrogateOpt, shipped with

the Optimization Toolbox of Matlab, RBFOpt, which is an

open-source optimizer written in Python, and DIRECT-GL,

which is an improvement of a widespread optimizer written

in Matlab yet open-source too. Aside from them, a naive

pure-random search strategy has also been implemented. They

have been compared when trying to tune a spiking neural

model of striatum plasticity that takes 1.78 h on average

to be simulated in the computing platform. The methods

were only allowed to evaluate 300 solutions in the first case

and 600 in the second. Both computational budgets were in

the same order of magnitude as a human expert takes to

tune the model used as the benchmark, i.e., several hundred

function evaluations.

SurrogateOpt stands out as the best solver to use, and

it is hence recommended for this kind of computationally

demanding neural model tuning problem. It achieves the

best average results with the lowest SD and significantly

distinguishes itself from the rest. The model configurations

that it finds with 300 function evaluations can compete

with the expert-based reference. Namely, the fitness of

the expert-based model tuning was 0.7216 after 2 months

of work, and the average of SurrogateOpt is 0.7269

with 300 function evaluations (6 h approximately). This

average increases up to 0.7699 when the method can

launch 600 evaluations. However, the effectiveness of

doubling the computational effort could not be confirmed

on average for the studied problem. Regardless, the

generic recommendation made is to work with the highest

computational budget and multiple independent executions due

to its stochastic nature.

RBFOpt and RandomSearch, both stochastic methods too,

perform significantly worse than SurrogateOpt in terms of

average fitness despite spending similar times. Hence, they

should be only used when there is no access to the referred

solver. Nevertheless, the potential of RandomSearch for this

kind of problem is remarkable, especially when a high-

performance computing platform is available. This method is

trivial to implement, and its performance can be significantly

improved by increasing the number of evaluated solutions per

unit of time.

In contrast to the rest, DIRECT-GL, the only deterministic

solver chosen, is also the worst option for the problem at hand.

Its parallel computing capabilities are limited by the number of

promising regions that the method can find. Since it does not

find the best regions in the search space and finds few attractive

zones, the algorithm is unable to fully exploit the computing

platform. These aspects make it not only the solver that achieves

the worst tuning configurations but also the slowest one.

In future work, the best-performing solver will be used to

tune other neural models featuring computationally demanding

simulation processes. Additionally, the study might be extended

as new suitable methods arise.
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