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Abstract— A new complex model of human motor control 

has been developed, combining brain internal models and 

neural network mechanisms. Based on nervous system 

structures and operating principles, a feedforward block, a 

feedback controller and a cerebellum-like learning module 

have been integrated and tested with an anthropometric 

robotic arm. A simulated sequence of 8-like tracking tasks 

showed the contributions of these main loops over time. 

Different external dynamics were introduced. The role of 

feedback corrections, intrinsically imprecise due to 

sensorimotor delays, decreases, while the output of cerebellum, 

which has been learning, increases; the movement becomes 

more accurate. Moreover, an experimental session on a subject 

performing the task repetitions using a haptic device was 

carried out, recording upper limb kinematics.  

 

I. INTRODUCTION 

HE biological motor system is a high performance 

control engine. Unlike artificial control systems, it 

exhibits much higher performance with great flexibility 

and versatility in spite of nonlinearities, uncertainties and 
large Degrees of Freedom (DoF) of animal bodies. 

Sensorimotor function is created from a highly distributed 

circuit that includes different neural centers, such as cerebral 

cortex, cerebellum, and spinal cord. 

The movement kinematic planning to achieve a 

particular task is assigned to the premotor and 

somatosensory cortical areas; they generate the optimal 

trajectory and transform this external-space Cartesian 

coordinates into internal-space joint coordinates through 

inverse kinematics processing. It was shown that 

somatosensory cortex cells encode joint-centered 
kinematics; their activity is correlated with position, velocity 

and acceleration parameters [1]. 

Then, the motor commands, in order to achieve such 

desired kinematics, are defined. The brain must construct 

internal models of the plant, objects and environment only 

through learning by experience and memorize them in its 

neural networks in a usable format for motor control. The 

primary motor cortex (M1) is considered the site where basic 

inverse dynamic models are stored, thus behaving as a 

nonlinear feedforward controller able to compute torque 

values. Since possible joint miscalibrations, context changes, 

noise and other uncertainties, this structure is not capable of 
guaranteeing an accurate control on its own. 

The cerebellum is able to fine-tune motor skills by 

processing incomplete or approximate commands issued by 

higher levels of motor system [2]. It is in charge of temporal 

 
 

and spatial movement coordination. Its structure, made up of 

microzones acting as functional units, fits well with the 

learning mechanisms. Patients suffering cerebellar 

dysfunctions (e.g. cerebellar ataxias) are almost unable to 

deal with disturbances as they can rely only on the imprecise 

and unstable feedback control to enhance the basic inverse 
model of motor cortex [3]. 

The action of a feedback controller in motor control is 

well accepted. The role of M1 in this loop is proved, 

neurophysiologically, by a dense projection from M1 to the 

spinal cord, often directly onto motor neurons, and by a 

number of correlations between M1 firing and end-effector 

kinematics [4]. Ito [5] showed that the feedback controller 

generates a command in motor cortex, which can tune the 

viscoelastic properties of musculoskeletal system (tension-

length and tension-velocity relationships).  Adaptive 

feedback controllers have been proposed [6], which means 
that the pre-programmed arm impedance changes in 

response to feedback information. For instance, it has been 

shown that impedance increases around the task constraints 

[7]. Feedback gains, which convert sensory state variables 

into motor signals, are optimized based on specific goals of 

a particular behavior, by following the ‘minimum 

intervention principle’ [8], [9]. Thus, the optimal feedback 

control consists of two main steps: state/error estimation and 

control laws.   

No model of human-like motor control including this 

overall complexity has been built. In all biological systems, 

in which all the different parts have been evolved together 
towards global aims, the whole is more complex than the 

sum of its parts. Kawato [10] proposed the adaptive 

nonlinear feedforward controller, based on a feedback-error 

learning architecture; that is, error signals from linear 

feedback controller tune the feedforward inverse model 

parameters. Schweighofer and colleagues [11] showed how 

the cerebellum may increase the accuracy in target reaching 

movements by compensating for the interaction torques, thus 

by learning a portion of the inverse dynamics model that 

refines a previously stored  basic inverse model in the motor 

cortex. Other models were proposed and tested on planar 
movements of a robotic arm, e.g. [12], [13]. 

Starting from functional/anatomical schemes and from 

these previous important steps, the present study integrates 

control models [14], learning models, neural network 

dynamics and behavioral observations, by using both 

modeling/computational and experimental approaches on 

multi-joint 3D movements. 
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II. MODELING APPROACH 

A. Control system 

Fig.1 comes up with the main neural structures and 

mutual connections involved in motor control, highlighting 

the ones implemented in our model.  

Premotor and sensory cortex blocks compute the 

kinematic planning. First, the desired trajectory is generated 

following a minimum-jerk criterion in external space, so 

facing the kinematic redundancy [15]. Then, closed-form 
inverse kinematics is carried out to compute displacement, 

velocity and acceleration for each of the three joints [16]. 

The nonlinear feedforward controller is placed into M1 

block; it is made up of an inaccurate inverse dynamic model 

of the arm based on recursive Newton-Euler dynamic 

equations computing joint torques. These dynamic equations 

do not take into account friction torques, inertial interaction 

torques (i.e. inertia tensor matrix presents zero terms for the 

off-diagonal elements), and internal neural noise. The latter 

here consists of both sensorial noise on actual kinematics 

and signal-dependent noise on total torques, i.e. proportional 
to motor command amplitudes [17], [18]. Moreover, the 

inverse model does not include unexpected external force 

changes, embedding just the very well-known gravity action. ������������ 	 τ��
 � τ� � τ�� � τ�������� � τ��� 
 

 The linear feedback controller, receiving somatosensory 
information from the periphery, is sited within M1. By 

means of exploiting muscular viscoelasticity, an additive 

torque value is produced depending on the ongoing error, as 

an online correction. Its performance is limited due to the 

system nonlinearities and the inevitable feedback 

sensorimotor delays. Because of muscle spindles do not 

carry a significant amount of acceleration information, only 

position and velocity are present in the feedback controller. 

Position and velocity errors (ep, ev) are weighted by gains 

(Kp and Kv: elasticity and viscosity features, respectively); 

this arm impedance is selected depending on the task 

requirements and keeping in mind that high feedback gains 

enhance robustness to external perturbations but, at the same 

time, increase noise (signal-dependent noise) and metabolic 

cost. It would imply non-compliant and non-stable 
movements [19], [20]. 

��������� 	 K� ∙ e� � K ∙ e  

 

The plasticity mechanisms are implemented by the 
cerebellum and inferior olive blocks. The cerebellum learns 

to provide corrective torques towards reducing the kinematic 

errors in incoming trials; thus, it acts as a predictor. 

This biological adaptation takes place on the parallel fiber 

to Purkinje cell synapses, driven by the activity from the 

Inferior Olive that here encodes a teaching signal (dependent 

on the accuracy of the movement execution compared to the 

desired movement trajectory).This system implements a 

look-up table which associates each parallel fiber state [27] 

with a Purkinje cell output. This association is iteratively 

modified during the learning process. 
The adaptation mechanism is based on LTD/LTP (Long-

Term Depression and Potentiation) processes validated in 

previous approaches [21] with a linear firing rate cerebellar 

model. This cerebellum-like model delivers add-on output 

corrective torque terms based on the received feedback error 

Figure 1. Model 
The scheme includes the main neural structures and functional interconnections involved in motor control. In red the blocks and the 

connections implemented in our control model. 
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along previously executed trials. The cerebellar module 

torque action is defined following the equation: �������!!"# 	 (MF�'�� − PC�(t,, ∙ Gains�2� 
 

Where Gainsout allow a rescaling based on the torque ranges, 

MFgain represents the activity coming through  mossy fibers 

(this input activity has been fixed to 1 in order to normalize 

the output activity in between 0 and 1) and PCi(t) is the 
Purkinje cell firing rate associated to the currently active 

parallel fiber. This activity is iteratively modified following 

the equation:  

 

∆PC�(t, 	
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6
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Where LTPMax and LTDMax are parameters which regulate 

the learning plasticity mechanism speed (both have been 

fixed to 0.2), e represents the error signal (a linear 

combination of joint position and velocity error, normalized 

between 0 and 1) and α regulates the LTP/LTD interaction 

(it has been set up to 1000 to reduce LTP action in presence 

of a significant error). Finally, PCi(t) is configured to be 

always working in the range [0, 1]. 

The expected behavior of the whole system should be 

that the feedback controller progressively is driven out, since 
the cerebellum adjusts progressively internal models. Thus, 

the desired motions will be mainly predicted and only small 

correction forces will be required, so increasing the system’s 

control compliance. 

 

B. Plant 

 

A robotic arm is built with 3 rotational DoFs: q1 

represents shoulder abduction/adduction, q2 shoulder 
lowering/elevation, and q3 elbow extension/flexion, as 

reported in Fig.2-a. The kinematic parameters are defined 

according to Denavit-Hartenberg convention (Fig.2-c), 

setting the link lengths depending on subject’s 

anthropometric measurements. The inertial parameters for 

each link, such as mass, CoM position, and inertia tensor are 

set depending on subject’s anthropometric measures as well 

[22], [23], [24], [25]. 

 

C. Simulations  

The control loop and the robot plant have been built up 

in Simulink (Mathworks®), using a Robotic Toolbox [26].  

A simulation of an 8-like trajectory tracking task in 3D 

was carried out, where one trial lasted 4 s and 20 repetitions 

were performed. The unexpected external force 

perpendicular to end-effector was a step: from 0.6 N to 2.3 N 

at half of each trial duration. The time resolution was 2 ms.  
The signal-dependent noise was a white noise with 

amplitude equals to 2% of the torque amplitude.  

The feedback controller was characterized by Kp and Kv 

proportional to the external force modulus: Kp = 3·|Fext| 

[Nm/rad]; Kv =  1·|Fext| [Nm/(rad/s)]. The delay was 50 ms. 

The cerebellum module was implemented by a linear firing 

rate model of the cerebellum which includes some of the 

traditional  working hypothesis of the cerebellum, such as 

the generation of non-recurrent states at the granular layer 

[27], synaptic plasticity at the parallel fibers driven by the 

climbing fiber activity and synaptic integration at the 

Purkinje layer [28], [29].  
For each task repetition, multiple variables were 

recorded. The different contributions on the total torque (τtot) 

were computed, as ratio of Root Mean Square (RMS) 

values:  

• τcerebellum/τtot  = RMS(τcerebellum) / [ RMS(τcerebellum) + 

RMS(τfeedback) + RMS(τfeedforward) ] 

• τfeedback/τtot  = RMS(τfeedback) / [ RMS(τcerebellum) + 

RMS(τfeedback) + RMS(τfeedforward) ] 

 

The Cartesian error of the end-effector was evaluated by 

using two main parameters: RMS-Error and the correlation 
between the desired and the actual 3D trajectories. 

 

D. Results 

The main simulation results are reported in Fig.3. It is 

evident, from the joint angles (3-a), that the distance 
between the desired and the actual movements decreases 

over time. It is also supported by the Cartesian trajectories 

(3-c) and the performance indexes (3-d and 3-e).  

Panel 3-b shows how the different controllers contribute 

to the whole motor commands over time; the feedback 

component is predominant in the very first trials, while the 

cerebellum is still learning. 

 

 

 

Figure 2. Human-like robotic arm 
(a) Robotic arm built for our model, with 3 DoF. Green (q1): 
shoulder abduction/adduction. Red (q2): shoulder 
lowering/elevation. Blue (q3): elbow extension/flexion. 
(b) Experimental set-up: the 3-marker tools on the involved joints, 

the haptic device and the graphical interface with the required task.  
(c) The conventional Denavit-Hartenberg parameters which define 
the kinematic features of the anthropometric robotic arm. 
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Latest repetitions show a cerebellum correction activity 

bigger than the feedback one for all joints, with quite stable 

trends. It is worthy to note that the q3 curves (green) are 
higher than the other joints even if the error is smaller (as it 

is shown by the green curves in panel 3-a) since this joint 

feedforward torque does not include the gravity component; 

q3 indeed moves on the horizontal plane. 

 

III. EXPERIMENTAL APPROACH 

A. Set-up 

Preliminary experimental sessions on one healthy subject 

were carried out in order to qualitatively compare the 

simulator kinematic movement and a realistic one. The 

subject’s upper limb segments were acquired by a motion 

capture system (VICRA, PolarisTM), thus placing a 3-

passive-markers tool on each joint (shoulder, elbow and 

wrist). A haptic device (PHANToM OMNI, SensAbleTM) 

was used to perform the task, developing in Visual C++ a 

task-specific visual interface and a control algorithm proving 
the subject with the external force changes. By displaying a 

countdown, the subject was aware of the required trial 

duration. Start and end points were marked through 

touchable spheres within the task environment. The set-up 

picture is reported in Fig.2-b. 

In order to constrain the movement to the selected 3 DoFs, 

the subject worn a wrist plaster cast, so as the haptic device 

pen was like a forearm extension. The subject was instructed  

to avoid as much as possible the use of finger DoFs, the 

shoulder rotation and any translation. 

After few familiarization trials, the subject was asked to 

perform 5 trials with a low constant external vertical force 
field (0.6 N) and 5 trials with a force field change from the 

half of each trial duration (from 0.6 N to 2.3 N). 

 

Figure 3. Simulation with external perturbation at half of each task repetition 
(a) The 3 DoF angles (q1, q2, and q3, as in Fig.2-a), with time (80 s, i.e. 20 repetitions). Solid curves: the actual joint 

angle; dashed curves: the desired joint angle.  
(b) The % contributions, with respect to the total generated torque, of cerebellum torque (star curves) and of feedback 
torque (circle curves). These values are reported for each joint and for each task repetition.  
(c) The 3D Cartesian end-effector trajectories. In violet: the desired one. In black: the first repetition. In thick grey: the 
last repetition. In thin grey: the intermediate repetitions.  
(d) The Root Mean Square Error between the 3D desired trajectory and the actual one, for each repetition.  
(e) The correlation coefficient between the 3D desired trajectory and the actual one, for each repetition. 
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B.  Results 

 

Fig.4 depicts the main representative results, concerning 

the 5 trials with external disturbance. In Fig.4-a, the 

experimental angles are laid on the ones which come from 

simulator planning (desired joint angles). It is evident that, 

whereas the shoulder DoFs (q1 and q2) fit quite well with 

the desired ones, the elbow flexion (q3) is significantly 
smaller in the experimental data than in the simulation 

approach. This could be because the subject used also other 

DoFs, such as fingers, to achieve the task. 

Fig.4-b draws the cartesian end-effector trajectories, and in 

Fig.4-c and 4-d, performance indexes, analogous to the ones 

computed for simulation, are reported along the 5 

repetitions. Both parameters show values that are similar to 

the ones achieved in simulation after the first trials. It could 

be explained by the fact that the subject performed some 

trials for familiarization before recordings, even if not 

enough training time to get a stable behavior. Next 
experiments will foresee more repetitions, so as to achieve a 

convergent trend of performance indexes. 

 

 

IV. DISCUSSION 

The model presented here for motor control revealed 

itself neurophysiologically plausible and comparable with 

experimentally-based modeling. It successfully puts together 
different flexible controllers and predictors, including both 

control-based and neural-network blocks in a whole complex 

system.  

The model behavior can be explored for other tasks (e.g. 

first tests on reaching task have been carried out) and for any 

dynamic environment. Multiple factors can be set; for 

instance, the inverse dynamic model inaccuracies, the task-

dependent optimal feedback law and the time constant of 

cerebellar learning rules. 

A lot of enhancing steps will be implemented within the 

model. The analogical model of the cerebellum can be 
replaced with a spiking network version similarly as 

presented in [13] and [21] (EDLUT: Event-Driven Look-Up 

Tables), which can naturally include more realistic plasticity 

mechanisms [30], starting from  the most recent dualism 

between neurophysiology evidences and neural network 

modeling, e.g. [27]. Furthermore, the cerebro-cerebellar loop 

could be exploited within the model. In this direction, a first 

attempt was carried out through a recurrent architecture 

model, where the cerebellum output modified the motor 

cortex input, i.e. the kinematic planning, so solving the 

motor error problem [31]. 

 
Finally, the neurophysiology demonstrated that, after 

learning, the inferior olive response decreases significantly 

[12], thus suggesting that when the cerebellum learning has 

been completed, the learning consolidation occurs 

transferring this information directly to the motor cortex, i.e. 

making directly the feedforward generated motor commands 

more accurate. 

In conclusion, this model is using a control scheme 

consistent with the motor-learning theory, in which the 
motor error is pre-computed and sent to the parallel fiber - 

Purkinje cell connection of the cerebellum, in order to 

generate LTD and LTP through a supervised learning rule. 

Thus, the model now provides the basis for testing more 

biologically plausible architectures and computational 

solutions, including vector coding in the motor cortex, 

implicit learning in the cerebellar granular layer, and various 

signal transformations in the different nuclei involved. In 

particular, the expansion of the cerebellum into a detailed 

neuronal network using the EDLUT simulator will allow to 

test the impact of biological circuit and cellular properties on 
the control capabilities of the cerebro-cerebellar loop. 

 

Figure 4. Experimental data 
(a) The 3 DoF angles (q1, q2, and q3, as in Fig.2-a), with time (20 
s, i.e. 5 repetitions). The vertical lines bound each repetition. Solid 
curves: experimental data; dashed curves: the desired joint angles 
from simulator planning.  
(b) The 3D Cartesian end-effector trajectories. In violet: the desired 
one. In black: the first repetition. In thick grey: the last repetition. 
In thin grey: the intermediate repetitions.  

(c) The Root Mean Square Error between the 3D desired trajectory 
and the actual one, for each repetition.  
(d) The correlation coefficient between the 3D desired trajectory 
and the actual one, for each repetition. 
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