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Abstract The cerebellum is involved in learning and memory
of sensory motor skills. However, the way this process takes
place in local microcircuits is still unclear. The initial proposal,
casted into the Motor Learning Theory, suggested that learning
had to occur at the parallel fiber–Purkinje cell synapse under
supervision of climbing fibers. However, the uniqueness of this
mechanism has been questioned, and multiple forms of long-
term plasticity have been revealed at various locations in the
cerebellar circuit, including synapses and neurons in the gran-
ular layer, molecular layer and deep-cerebellar nuclei. At pres-
ent, more than 15 forms of plasticity have been reported. There
has been a long debate on which plasticity is more relevant to
specific aspects of learning, but this question turned out to be
hard to answer using physiological analysis alone. Recent ex-
periments and models making use of closed-loop robotic sim-
ulations are revealing a radically new view: one single form of
plasticity is insufficient, while altogether, the different forms of
plasticity can explain the multiplicity of properties characteriz-
ing cerebellar learning. These include multi-rate acquisition
and extinction, reversibility, self-scalability, and generalization.
Moreover, when the circuit embedsmultiple forms of plasticity,

it can easily cope with multiple behaviors endowing therefore
the cerebellum with the properties needed to operate as an
effective generalized forward controller.
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Introduction

The cerebellum is involved in the acquisition of proceduralmem-
ory, and several attempts have been done at linking cerebellar
learning to the underlying neuronal circuit mechanisms. The first
hypothesis was proposed within the Motor Learning Theory,
which indicated that some form of long-term depression (LTD)
or long-term potentiation (LTP) [1, 2] had to occur at the parallel
fiber–Purkinje cell (PF-PC) synapse under guidance of the CFs,
which were assumed to convey an error signal. Following the
demonstration that a PF-PCLTD compatible with theory actually
existed [3], many other works have reported that several forms of
synaptic and nonsynaptic plasticity exist in the cerebellum. Now,
synaptic plasticity is known to be distributed in the granular layer,
molecular layer, and deep cerebellar nuclei (DCN) [4–6] involv-
ing both excitatory and inhibitory synaptic transmission as well
as neuronal intrinsic excitability. Most of these different forms of
plasticity eventually impinge on three main neurons, namely
granule cells (GrCs), PCs, and DCN cells, which act as nodes
integrating excitatory and inhibitory plasticity.

These new findings have complicated rather than clarified
the issue of how the cerebellum might learn and store infor-
mation using its internal circuitry. At present, there is not yet
agreement about the type of information conveyed by the
climbing fibers into the cerebellum or about their potential
role. The Marr-Albus theory maintains that climbing fibers
carry either an error signal related to directional information
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[7] or a binary teaching signal [8, 9]. Conversely, considering
the periodic nature of climbing fiber activity, others [10] main-
tain that IO activity is related with the timing of movement.
However, investigations in which this periodicity was not ob-
served [11] suggested that the climbing fiber activity was cor-
related with the onset of movements. The controversy extends
to IO functional properties, which are not yet univocally de-
fined [12–14]. Finally, the different cerebellar plasticity mech-
anisms recently observed in the cerebellum and related nuclei
suggest that motor learning may not be exclusively related to
climbing fiber activity [6, 15–17]. Alternative hypotheses
have suggested an important role for plasticity in the DCN
[18] or in the vestibular nuclei [19]. However, no clues were
given to integrate the role of all the different plasticity mech-
anisms into a coherent view.

When trying to face this issue, a fundamental question
emerges: how could the role of multiple plasticitymechanisms
be determined within a complex system of circuit loops
transporting feedback signals related to ongoing behavior?
Recently, the problem has been faced through two series of
experiments, in which the cerebellar circuit was engaged in
learning tasks during closed-loop signal processing.

In a first set of tests, eyeblink classical conditioning
(EBCC) was elicited in humans, and its effectiveness was
impaired using TMS [20, 21], which proved able to alter spe-
cific learning components and cerebellar subcircuits. In the
second set of tests, the cerebellar circuit was reconstructed
using detailed models of neurons and synapses [22]. Then,
the models were adapted and inserted into robotic control
systems capable of reproducing the same behaviors that are
known to engage cerebellar learning in leaving beings [23–
28]. These robotic tests allowed a direct assessment of the way
the cerebellum might use distributed plasticity to process in-
coming information and generate an internal memory useful
to drive sensori-motor adaptation.

Distributed Plasticity in the Cerebellar Network

Recent reviews have dealt with the multiple forms of long-
term plasticity (at least 15 synaptic and 3 of intrinsic excitabil-
ity) discovered in the cerebellar circuit [4–6, 29], which are
briefly summarized here (Fig. 1):

In the granular layer, synaptic plasticity has been reported
to occur at the mossy fiber (MF)–granule cell (GrC) relay
as LTP [30–32] and LTD) [33, 34]. LTP and LTD have
been also observed in vivo [35, 36]. MF-GrC LTP proved
dependent on NMDAR [30] activation and showed a pre-
synaptic expression probably mediated by NO release
from GrCs [37, 38]. According to the Bienenstock-
Cooper-Munro (BCM) plasticity rule [39], LTP and
LTD induction correlated with stimulus duration and

frequency through a postsynaptic calcium-dependent
mechanism [33, 34] with a sliding threshold controlled
by neuromodulators [40]. Forms of plasticity in the Golgi
cell inhibitory loop remain hypothetical at the present
(except for some evidence for LTD at the PF-GoC syn-
apse [41]), although modeling predictions suggested that
they may provide a powerful regulatory mechanism [27].
In the molecular layer, synaptic plasticity has been de-
scribed in multiple forms at the parallel fiber to Purkinje
cell (PF-PC) synapse, at the climbing fiber to Purkinje
cell (CF-PC) synapse, and parallel fiber to molecular lay-
er interneuron (PF-MLI) synapse and molecular interneu-
ron–Purkinje cell (MLI-PC) synapse.

At the PF-PC connection, several forms of plasticity
have been observed: presynaptic LTP [42, 43], presyn-
aptic LTD [44], postsynaptic LTP [45, 46], and postsyn-
aptic LTD [47–49]. The postsynaptic forms of LTP and
LTD have been reported to be bidirectional according to
an inverse BCM plasticity rule. Moreover, while post-
synaptic PF-PC LTD is generally assumed to require
paired climbing fiber (CF) activation, this may not be
an absolute requirement in some cases [17]. Although
PF-PC plasticity has been observed in vivo [50–52], it
is not clear whether all these forms of plasticity are
present in vivo and cooperate in regulating PC activity
state.

Climbing fiber–Purkinje cell (CF-PC) plasticity has
been suggested to play a pivotal role in controlling the
PF-PC state of activity. CF-induced complex spikes in
PCs are an important source of intracellular calcium that
can determine the direction of plasticity at the PF-PC
synapse. Indeed, CF-PC LTD [53] was shown to affect
the probability of postsynaptic LTP and LTD induction
at the PF-PC synapses [45].

PF-MLI LTP [54] and LTD [55], respectively pre-
and postsynaptically expressed, have been described.
Interestingly, PF-MLI LTP may be induced by paired
activation of PFs and CFs in vivo [56]. A form of
MLI-PC LTP has been reported to depend on the
CF-induced rebound potentiation of inhibitory cur-
rents in PCs [57].

As far as the molecular mechanisms of molecular
layer plasticity are considered, the involvement of
NMDARs and NO was reported both at PF-PC, CF-
PC, and PF-MLI synapses [58–61].
In the DCN, several forms of synaptic plasticity have
been described, at MF-DCN and PC-DCN synapses. A
MF burst that precedes a DCN post-inhibitory rebound
depolarization (consequent to PC activation) induces a
synapse-specific MF-DCN LTP [62]. This induction
protocol mimics the predicted time-course of excita-
tion and inhibition during eyeblink conditioning.
Interestingly, MF-DCN LTP has been shown to
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depend on the timing of the two different signals act-
ing independently, rather than being a coincidence de-
tector enabled by reaching a calcium threshold. This
mechanism is likely to be adequate to allow adaptive
plasticity during associative learning tasks [18, 63].
Moreover, a form of calcium-dependent MF-DCN
LTD has been described [64].

At the PC-DCN connection, both LTP [65, 66] and
LTD [67] have been observed. LTP and LTD appeared
to depend on NMDARs activation and postsynaptic
intracellular calcium increase. As a consequence, plas-
ticity at these synapses strongly depends on excitatory
(MF and CF) synapses activation level [65–67].

Special Issues in Plasticity Regulation and Control

The identification of the different forms of plasticity, mostly
through experiments carried out in brain slices, is surely fun-
damental to understand the possible mechanisms at work.
However, understanding how plasticity is controlled is then
critical to realize when these mechanisms are called into play
and, in most cases, this requires experiments in vivo. The
precise identification of mechanisms in vivo is less precise
than in brain slices, but in turn, the interplay of numerous
distributed mechanisms can be appreciated. The integrated
analysis of these results is beginning to provide a picture of
the potential impact of plasticity in the cerebellar network.

Fig. 1 Distributed plasticity in the olivo-cerebellar circuit. This
schematic view shows the main architecture of cerebellar microcircuits.
Inputs from mossy fibers (MFs, in red), parallel fibers (PFs, in red), and
inferior olive (IO) projections (climbing fibers, CFs, in orange) provide
the excitatory drive, while the inhibitory connections are shown in blue.
In particular, the granular layer and the molecular layer include an
inhibitory loop mediated by local interneurons (Golgi cell, GoC, and
molecular layer interneuron, MLI, respectively), while the whole
cerebellar cortex acts as the inhibitory loop to the deep cerebellar nuclei
(DCN) neurons, through the Purkinje cell (PC) connection. MFs and CFs

project both to the cerebellar cortex and to the DCN neurons.MFs contact
granule cells (GrCs) and send collaterals to inhibitory GoCs. GrCs
originate the PFs that make synaptic contact with PCs, MLI, and GoCs
(originating a granular layer feedback loop). The figure highlights the
major forms of plasticity reported experimentally in the cerebellar
network: synaptic long-term potentiation (LTP), synaptic long-term
depression (LTD), and plasticity of intrinsic excitability (ie). At the PF-
PC connection, the forms of presynaptic LTP or LTD (pre LTP, pre LTD)
and postsynaptic LTP or LTD (post-LTP, post-LTD) are indicated (color
figure online)
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Plasticity mechanisms in the granular layer may serve to
improve spatiotemporal recoding of MF inputs into specific
GrC spike patterns (expansion recoding [68]). Overall, synaptic
plasticity in the molecular layer may serve to store correlated
granular layer spike patterns, through PFs activation, under the
CFs teaching signal [69]. Synaptic plasticity in the DCN may
serve to store MF spike patterns [62, 70] depending on control
signals generated through the cerebellar cortical loop. Recent
works [18, 71, 72] have suggested the importance for MF-
DCN and PC-DCN plasticity in controlling cerebellar learning
in eyeblink conditioning and vestibulo-ocular reflex (VOR).
Moreover, long-term changes in intrinsic excitability in GrCs
[73], PCs [74, 75], and DCN [76, 77] cells could further regu-
late the global activity level in these neurons contributing to
homeostasis and plasticity in the circuit (e.g., see [78]).

The temporal input patterns could play a relevant role in
determining where and how plasticity is generated in the cer-
ebellar circuit. The cerebellar neurons are designed to accu-
rately process temporal patterns, and the synapses can decode
these patterns through various forms of spike-timing-
dependent plasticity (STDP). Granule cells are designed for
high temporal precision [79] and can control output spike
patterns on the millisecond range [68, 80] also exploiting their
own plasticity mechanisms [35, 79, 81]. These patterns in turn
are critical for regulating PC activation and plasticity [68].
Additional control over PC plasticity can be exerted by the
IO, reflecting the variability of burst duration [82, 83]. Finally,
PCs are endowed with complex mechanisms of coincidence
detection, which integrate the burst patterns conveyed by
granule cells, the inhibitory control of MLIs, and the signals
conveyed by the IO, fine tuning spike bursts and pauses at
their output [84, 85]. Another important but still puzzling as-
pect is the role of activity oscillations and resonance, from low
to high-frequencies, which could be instrumental to imple-
ment STDP rules in cerebellar subsections [86].

Complex Spatiotemporal Dynamics of Cerebellar
Learning

The nature of cerebellar learning is complex, and different
components and properties have been revealed in experiments
in animals and humans. A leading hypothesis is that cerebellar
learning is composed of two phases [87, 88]: the fast reversible
learning phase is thought to occur in the cerebellar cortex, while
persistent memory should then be stored into deeper structures,
for example, the DCN. A useful test that can be used to explore
cerebellar learning is the EBCC reflex. An unconditioned stim-
ulus (US, like a corneal touch or an electrical stimulus on the
supraorbital nerve) elicits an eyeblink. This can be associated
with a conditioned stimulus (CS, like a tone) to elicit a blink
with precise time relationship to US. The EBCC is useful as it
involves prediction of an event with precise timing through

associative learning, thereby summarizing in an elementary
form the essential elements of cerebellar functioning [89].

The involvement of the cerebellar cortex in EBCC was
previously suggested by experiments in which the GABA-A
receptor agonist muscimol was infused to transiently inacti-
vate local circuit functions in rats. Infusion of muscimol in the
posterior cerebellar cortex (lobule HVI) was effective after
short (5–45 min) [90] but not after longer delays (90 min)
[91]. Conversely, muscimol infusion in the anterior
interpositus nucleus just after training was poorly effective.
These experiments suggested that learning was transferred
quite early from a cortical into a nuclear neuronal site.

In recent experiments (Fig. 2), EBCC has been elicited, and
then its components have been disrupted using TMS in
humans [20, 21]. Consistent with animal experiments, TMS
applied just after training (5–10 min) affected the transient
phase of learning. The cellular mechanisms of EBCC learning
are thought to depend on long-term synaptic plasticity at cor-
tical and deep cerebellar nuclei (DCN) synapses [90–92]. The
parallel fiber–Purkinje cells synapse is strategically located at
the convergence between the mossy fiber–parallel fiber path-
way (carrying the CS) and the climbing fiber pathway (carry-
ing the US). Another site of convergence is the DCN, which
collects both mossy fiber and climbing fiber signals, in addi-
tion to being modulated by Purkinje cells [4].

At both sites, long-term synaptic plasticity has been sug-
gested to play important roles in EBCC [93]. In particular,
cortical plasticity has been associated with the fast learning
process and DCN plasticity with the slow learning process
[26, 72]. Thus, the effect of TMS is compatible with disrup-
tion of cortical rather than DCN plasticity. Given the distrib-
uted nature of cerebellar cortical plasticity, a working hypoth-
esis is that TMS operated at multiple cortical sites [4]: (i)
in the granular layer, on N-methyl-D-aspartate (NMDA)

�Fig. 2 EBCC in two-session protocols reveals multiple learning
mechanisms. EBCC was induced in human subjects in a two-session
protocol. The first EBCC training was followed by a second identical
session 1 week later. Just after the first session, in a group of subject, a
theta-burst TMS protocol was applied on the cerebellum. a The EBCC is
a reflex in which the olivo-cerebellar system operates in closed-loop. The
unconditioned stimulus (US) is an electrical stimulus to the supraorbital
nerve and is conveyed to the sensory trigeminal nucleus (V). The
conditioned stimulus (CS) corresponds to a tone. CS and US
coterminate (“delay” EBCC). The olivo-cerebellar circuit learns to
produce conditioned responses (CRs), i.e., an eyelid blink anticipating
the US onset. In this system, the movement is triggered by stimulus and
can be subsequently corrected in the nuclei of the facial nerve (VII) by the
cerebellar intervention. The US is conveyed to the IO and generates CF
signals, and the CS is conveyed through the auditory system and
generates MF signals. No loop between cerebellum and cerebral cortex
is required. The eyelid muscles and skin also convey proprioceptive and
esteroceptive signals to MFs. b Number of CRs (%) along trials (six
acquisition blocks followed by an extinction block) progressively learnt
to generate CRs anticipating the US, to rapidly extinguish them and to
consolidate the learnt association to be exploited in the retest session
(sham indicates an ineffective stimulation)
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receptor-dependent LTP and LTD at the MF-GrC synapses as
well as on long-lasting changes in granule cell intrinsic excit-
ability; and (ii) in the molecular layer, on various forms of
NMDA receptor-independent LTP and LTD at PF-PC, at
climbing fiber–Purkinje cell synapses, at molecular interneu-
ron synapses as well as on long-lasting changes in Purkinje
cells intrinsic excitability.

Models of Cerebellar Synaptic Plasticity

In order to conceptualize the different forms of cerebellar
plasticity, a set of four simplified rules have recently been
proposed following the main biological properties reported
above (cf. Fig. 1). All these plasticity rules were conceived
to be bidirectional and have been based on simplified
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formalisms. These rules have been rescaled and assigned to
specific synapses and cerebellar microcomplexes (i.e., the
morpho-functional units in which the cerebellar model has
been subdivided) in order to deal with the complexity that
neurorobotic tasks imposed (see below). The equations are
constructed to generate a variation of synaptic strength de-
pending on the difference between the LTP and LTD terms,
which have their own maximum size and rate of change.
Additional terms represent the dependence of LTP and LTD
on other critical processes, like activity in certain neurons and
synapses. In the conventional system used in the simulations,
LTPmax and LTDmax represent the maximum percentage
changes of LTP and LTD and are related to the corresponding
changes in synaptic currents. The time constant α represents
the rate of decay of plasticity after having been established and
is related to the physiological time-course of plasticity based
on observations in vitro and in vivo. The time-dependent
terms (e.g., O(t)) are related to the average firing rate of a
given neuronal population during the simulation.1

1. PF-PC synaptic plasticity is, by far, the most investigat-
ed cerebellar plasticity mechanism, as evidenced by the
large amount of studies supporting the existence of mul-
tiple forms of LTD [3, 45, 94] and LTP [6, 45, 94]. Proof
of this PF-PC plasticity trace was recently encountered in
both anesthetized (Ramakhrishan and D’Angelo, unpub-
lished observations) and alert animals [95]. The most re-
nowned form of LTD is heterosynaptically driven by CF
activity and therefore by the complex spikes (CSs) elicited
in PCs, whereas the main form of LTP does not require CF
activity and, therefore, it is related to the simple spikes
generated by PF activity. The specific formalism de-
veloped to describe the PF-PC plasticity rule depended
on the model adopted to describe the cerebellar gran-
ular layer. Assuming that PFs were active following a
certain time sequence during movement [96–98],

PF-PC synaptic plasticity could be implemented as
follows [26, 28]:

ΔWPF j −PCi tð Þ ¼
LTPMax

IOi tð Þ þ 1ð Þα −LTDMax⋅IOi tð Þ; if PF j is active at t

0 otherwise

8<
:

where i∈ 1; 2;…;Number of microcomplexesf g

where ΔWPF j−PCi tð Þ represents the weight change between
the jth PF and the target PC associated with the ith
microcomplex. IOi(t) stands for the current activity coming
from the associated climbing fiber, LTPMax and LTDMax are
the maximum long-term potentiation/long-term depression
(LTP/LTD) values, and α is the LTP decaying factor. This rule
assumes that LTP and LTD coexist at the same PF-PC synap-
se. Since LTP and LTD, by definition, induce opposite effects
in relation to CF activity, providing the mathematical expres-
sion with appropriate parameters makes the synaptic weight
variation to be positive (LTP) when CF activity is approaching
0 (low error levels in the movement) and makes the weight
variation to be negative (LTD) and linearly proportional to CF
activity otherwise. In previous approaches, a linear function
was used [99] when the synaptic weights were modified ac-
cording to a teaching signal, but this implied the inability of
the synaptic learning rule to fully remove the manipulation
error since LTD was always counterbalanced by
Bunsupervised^ LTP. The present rule overcomes the linearity
problem by inserting the α decaying factor.
2. MF-DCN synaptic plasticity has been shown to depend on

the intensity of DCN cell excitation [18, 64, 100, 101] and
could be implemented as follows [26, 28]

ΔWM F−DCNi tð Þ ¼
LTPMax

PCi tð Þ þ 1ð Þα −LTDMax⋅PCi tð Þ;

where i∈ 1; 2;…;Number of microcomplexesf g
where ΔWMF-DCNi(t) represents the weight change between
the active MF and the target DCN associated with the ith
microcomplex, PCi(t) is the current activity coming from the
associated PCs, LTPMax and LTDMax are the maximum LTP/
LTD values, and α is the LTP decaying factor. The MF-DCN
learning rule, despite its resemblance to the PF-PC learning
rule, bears two significant differences. The first difference is a
consequence of the limited capability of MFs, compared with
PFs, to generate sequences of nonrecurrent states [98, 102,
103]. The second difference involves the connection driving
LTD and LTP. Whilst PF-PC plasticity is driven by CF activ-
ity, MF-DCN plasticity is driven by PC activity. This mecha-
nism is capable of optimizing the activity range in the whole
inhibitory pathway comprisingMF-PF-PC-DCN connections:
High PC activity causes MF-DCN LTD, whereas low PC
activity causes MF-DCN LTP. This mechanism implements
an effective cerebellar gain controller able to adapt its output
activity range in order to minimize the amount of inhibition
generated in the MF-PF-PC-DCN inhibitory loop.

1 Notes on the nature of models used to test the learning rules
In order to test the impact of the plasticity rules, they have been

coupled to simplified cerebellar models [23] C. Casellato, A. Antonietti,
J.A. Garrido, R.R. Carrillo, N.R. Luque, E. Ros, A. Pedrocchi, and E.
D’Angelo [4]. Adaptive robotic control driven by a versatile spiking
cerebellar network. PLoS One 9, e112265, [105] C. Casellato, A.
Antonietti, J.A. Garrido, G. Ferrigno, E. D’Angelo, and A. Pedrocchi
(2015). Distributed cerebellar plasticity implements generalized
multiple-scale memory components in real-robot sensorimotor tasks.
Front Comput Neurosci 9, 24. In the spiking cerebellar models, neurons
are of the Bintegrate-and-fire^ type, i.e., they have an RC membrane
charging mechanism and a threshold for firing. The main properties of
these neurons are to generate a linear frequency-intensity relationship in
response to currents injected by synaptic inputs, to have a resting mem-
brane potential or a basal firing frequency similar to real cells, and to
show variations in firing during task processing reflecting the value
ranges observed in vivo. Synaptic activation occurs through current in-
jection into the model neurons and inputs from various neurons are inte-
grated over the RC.
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3. PC-DCN synaptic plasticity was reported to depend on
the intensity of DCN cells and PC excitation [65–67,
99] and could be implemented as follows [26, 28]:

ΔWPCi−DCNi tð Þ ¼ LTPMax⋅PCi tð Þα⋅ 1−
1

DCNi tð Þ þ 1ð Þα
� �

−LTDMax⋅ 1−PCi tð Þð Þ;
where i∈ 1; 2;…;Number of microcomplexesf g

where ΔWPCi-DCNi(t) is the synaptic weight adjustment at the
PC-DCN connection reaching the DCN cell associated with
the ith microcomplex, PCi(t) is the current activity coming
from the associated PCs, and finally, DCN is the current ac-
tivity regarding DCN cells. LTPMax and LTDMax are the max-
imum LTP and LTD values, and α is the LTP decaying factor.
This learning rule leads the PC-DCN synapses into a synaptic
weight appropriate to match the activity from the cortex (MF-
PF-PC-DCN) and the activity from the excitatory pathway
(MF-DCN). According to this learning rule, LTP occurs only
when both the PCs and their target DCN cell are simulta-
neously active.
4. Finally, it has recently been proposed that IO-DCN syn-

aptic plasticitymay provide an efficient way to embed the
feedback controller predicted by Ito [104] within the cer-
ebellar circuitry. This controller was able to generate a
proper command in motor cortex capable of tuning the
viscoelastic properties of the musculo-skeletal system.
This was conceived as a fast mid-term adaptation mecha-
nism to cope with the initial control phase when plasticity
has not yet progressed in the rest of the cerebellar circuit.
Within this hypothesis, IO-DCN plasticity was imple-
mented to regulate the initial synaptic strength of DCN
cells driven by the IO as follows [28]:

ΔWIO−DCN ;i tð Þ ¼ MTPMax⋅IOi tð Þ− MTDMax

IOi tð Þ þ 1ð Þα
;where i∈ 1; 2;…;Number of microcomplexesf g

where ΔWIO-DCN,i(t) represents the differential synaptic weight
factor related to the active connection at time t (whose asso-
ciated activity state corresponds to IOi(t)). The connection
corresponds to the DCN cell associated to the ith
microclomplex. IOi(t) stands for the current activity coming
from the associated climbing fiber. MTPMax and MTDMax are
the maximum midterm potentiation and depression, and α is
the MTD decaying factor. MTPMax and MTDMax are large in
comparison to LTP and LTD at the other synapses ensuring a
fast response and a negligible contribution to the learning
process in the long term.

Whilst these equations appropriately address the learning
process of the cerebellar network, some parameters, including
the plasticity decaying rates (α) and the LTPmax and LTDmax

scaling factors, are the Bcondensed^ expression of multiple
mechanisms so that their correspondence with real synaptic

parameters needs to be worked out. Moreover, the variety of
biological mechanisms is not fully represented by these equa-
tions. In fact, there are many more plasticity rules located at
the PF-PC synapses than considered here, as well as there are
plasticity mechanisms within the granular layer that were
sidestepped, and there is a plasticity mechanism at the IO-
DCN connection that was predicted but not proved yet.

Closed-Loop Robotic Simulations Embedding
Multiple Plasticity Rules

In a recent series of papers, we have explored the impact of
distributed cerebellar plasticity using a reverse engineering ap-
proach, i.e., making a biologically plausible reconstruction of
the system to explore its internal mechanisms of function. Since
the classical long-term synaptic plasticity between PFs and
PCs, which is driven by the IO, can only account for limited
aspects of learning, we have used distributed forms of plasticity
in the molecular layer and DCN [23, 26, 28, 105]. In the model,
the CFs provide a teaching signal driving long-term synaptic
plasticity both at the IO-PC and IO-DCN connections.We have
developed analog and spiking robotic controllers. An example
of a spiking robotic controller with reversible PF-PC plasticity
is shown in Fig. 3, and an example of simulations obtainedwith
the same controller equipped with an analog cerebellar module
with reversible plasticity at the PF-PC, PC-DCN, and MF-
DCN synapses is shown in Fig. 4.

The robotic simulations not only revealed that PF-PC plas-
ticity was fundamental to relate cerebellar plasticity to motor
errors but also revealed that PF-PC plasticity proved insuffi-
cient per se to make the cerebellum an effective adaptive con-
troller. LTD and LTP had to coevolve dynamically in order to
control PF-PC transmission making it reversible for resetting
and reuse. The memory stored in the PF-PC synapse was then
transferred into the DCN allowing consolidation. This mem-
ory transfer was controlled by feedback signals arriving
through extracerebellar loops and proved critical to allow
self-rescaling and automatic gain adjustment, preventing PF-
PC saturation. This operation required double adjustment of
MF-DCN and PC-DCN synapses in order to balance memory
deposition in DCN neurons. Moreover, in order to accelerate
and stabilize learning, the closed-loop robotic simulations
suggested that cerebellar gain control could be adjusted
through MF-DCN and PC-DCN synaptic plasticity working
in equilibrium with IO-DCN plasticity. IO-DCN connections
ensure stable outputs in the early learning stages, when the
strength of MF-DCN and PC-DCN connections is not set yet
through the learning process. When the strength of the synap-
tic weights of MF-DCN and PC-DCN connections begins to
stabilize, the synaptic strength of the IO-DCN connection di-
minishes. Therefore, at the end of the learning process, the
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Fig. 3 Closed-loop simulations using an olivo-cerebellar model single
plasticity. An olivo-cerebellar spiking-neural network (OC-SNN) model
was coupled to a robotic control system through a radial basis function
(RBF) interface to simulate an obstacle collision avoidance task, an
associative Pavlovian-like behavior emulating EBCC (cf. Fig. 2). In this
task, the IO-SNN operated as a forward controller by regulating the firing
pattern in DCN neurons under PC control. a The OC-SNN was operated
in closed loop. The conditioned stimulus (CS) represents a Warning
signal, detected by the optical tracker, activating at a given distance
threshold between the moving robot end-effector and the fixed obstacle
placed along its trajectory. The unconditioned stimulus (US) corresponds
to the collision event (crash). CS and US coterminate (as in the “delay”
EBCC). The olivo-cerebellar model learns to produce conditioned
responses (CRs), i.e., a stop of the robotic arm (collision avoidance)
anticipating the US onset. In this system, the trajectory planner
generates a movement that is subsequently corrected in the motor
controller by the cerebellar intervention. No loop is active between
cerebellum and trajectory planner. The US is generated by collision
during the task and conveyed by the sensory controller to the IO. The
CS is generated by the optical tracker. The sensory controller also
conveys proprioceptive signal from the robotic arm sensors to MFs of
the OC-SNN. bNumber of CRs (%) along trials (80 acquisition trials and
20 extinction trials for two sessions in a row; CR% is computed as

percentage number of CR occurrence within blocks of 10 trials each).
The black curve is the median on 15 tests, and the gray area is the
interquartile interval. Despite uncertainty and variability introduced by
the direct interaction with a real environment, the OC-SNN
progressively learnt to generate CRs anticipating the US, to rapidly
extinguish them and to consolidate the learnt association to be exploited
in the retest session. Note the similarity with EBCC acquisition in Fig. 2. c
PCs and DCNs spike distribution along trial time (500 ms from CS onset,
t0) for all trials. Each pixel represents one time-bin of 10ms, withinwhich
the number of spikes of the correspondent group is computed (first
column PC cell population, second column DCN cell population). After
learning, the response of PCs to MF inputs decreased, and this increased
the discharge in DCN neurons. The process was better exemplified in the
adaptation of the EBCC, in which a precise time relationship between the
events can be established. Since the DCN spike pattern changes occurred
before the US arrival, the DCN discharge accurately predicted the US and
therefore could facilitate the release of an anticipatory behavioral
response. At the same time, the IO signal carrying US decreased. The
prediction of a noxious stimulus triggers an anticipatory motor command.
The inhibition mechanism of the IOs by the DCNs translates the motor
command into a sensory prediction signal, allowing a single cerebellar
area to simultaneously tackle both motor execution and sensory
prediction
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effect of the IO-DCN connection in determining the cerebellar
output is negligible. Nonetheless, the IO-DCN connection re-
mains ready to act when new unexpected patterns have to be
learnt. In addition, a proper synaptic weight adjustment at
DCN synapses allows the PFs to operate over their complete
frequency range, enhancing the precision of the cerebellar
output. To sum up, the IO-DCN pathway could allow a global
feedback error reduction facilitating early and fast error cor-
rections. The MF-PF-PC-DCN system would operate by
achieving more accurate corrections in the long-term, but it
required slow learning [28].

An interesting aspect of the robotic simulations was that
they could be successfully applied to different behaviors
known to involve the cerebellum, including VOR, EBCC,
force field correction, and arm trajectory control [23, 105],
indicating that the implicit algorithm of the cerebellar network
was of general applicability. With reference to the EBCC case
illustrated above, EBCC simulations supported the concept
that memory transfer between PF-PC and DCN synapses has
to occur rapidly after the beginning of learning, helping to
define the possible patterns of alterations leading to EBCC
impairment caused by cTBS (Casellato et al. unpublished).

The robotic simulations provide a series of major concep-
tual advancements. First, the synaptic plasticity rules can be
observed at work inside an entire sensory-motor system or

even in closed-loop. This is a privileged way to understand
how the properties revealed in physiological experiments in
isolation (e.g., in brain slices) can impact on learning and
behavior. Secondly, several plasticities can be seen at work
simultaneously, yet maintaining full control over their individ-
ual evolution. Thirdly, the nature of changes in synaptic trans-
mission and neuronal firing occurring during learning can be
predicted and later tested for biological validations. Fourthly,
the quantitative nature of the data can be exploited for devel-
oping theoretical models of the cerebellar function. Clearly,
the precision of model predictions depends on the precision
and completeness of model internal mechanisms. These are at
the moment rather simplified in terms of neuronal and synap-
tic dynamics but complete enough to generate a coherent pic-
ture. It will be a challenge for the future to improve and make
more realistic network and robotic models in order to make
predictions more and more reliable.

Distributed Plasticity: New Perspectives
for Cerebellar Learning

TMS–EBCC experiments in humans in vivo and closed-loop
robotic simulations have provided new insight on how the
sensori-motor control system could exploit distributed

Fig. 4 Dynamic plasticity processing in closed-loop robotic simulations
using an olivo-cerebellar model with distributed plasticity. An olivo-
cerebellar analog neural network (OC-ANN) model embedded with
distributed plasticity was coupled to a robotic control system as in
Fig. 3 to simulate an obstacle collision avoidance task, an associative
Pavlovian-like behavior emulating EBCC (cf. Fig. 2). In this task, the
IO-ANN operated as a forward controller by regulating the firing

pattern in DCN neurons under PC control. Plasticity was implemented
at the PF-PC, MF-DCN, and PC-DCN synapses. The figure demonstrates
that learning of the CR occurs with both with one or three plasticity rules
into the OC-ANN. However, with three plasticities, there is faster
acquisition and dynamic plasticity transfer from PF-PC to MF-DCN
and PC-DCN synapses generating the two-phase learning predicted by
theory and observed experimentally in EBCC
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plasticity in the cerebellar network to generate biologically
plausible learning. TMS–EBCC experiments have indicated
that memory has to be transferred from the cerebellar cortex to
DCN in order to stabilize learning, although the exact time
constant of memory transfer is still unknown. Robotic simu-
lations have implemented this memory transfer by allowing
the cerebellar circuit to dynamically adjust synaptic weights
between the PF-PC synapse and the DCN by exploiting the
sensory-feedback deriving from ongoing activity in closed-
loop.

Robotic simulations revealed that a supervised mechanism
relating cerebellar learning to motor errors at the PF-PC syn-
apse remains a critical constraint. However, PF-PC plasticity
also proved insufficient per se to make the cerebellum an
effective adaptive controller, and other forms of plasticity dis-
tributed throughout the network appeared to be critical. These
include plasticity not only in the DCN but also probably in the
granular and molecular layers, although plasticity in these two
latter subcircuits has not been tested in robotic simulations yet.
Plasticity in the granular layer is indeed expected to determine
and store the large variety of spatiotemporal patterns required
to implement the expansion recoding of MF signals to be
presented to PCs and could become critical when multiple
forms of input signals from extended sensori-motor structures
will be considered.

There are some predictions descending from these investi-
gations about the nature of plasticity mechanisms in the cere-
bellar circuit. First, all plasticities should be reversible, so they
could have both LTP and LTD. Secondly, since the memory
transferred into downstream structures (e.g., from PF-PC into
DCN) is controlled by feedback signals arriving through
extracerebellar loops, understanding distributed plasticity re-
quires the whole systemworking in closed loop. Thirdly, there
are forms of plasticity that may not last for long in the freely
behaving animal (e.g., PF-PC LTD itself), and this should be
taken into account when searching for such plasticities exper-
imentally. Fourthly, there could be forms of plasticity that
have not yet been identified experimentally but could have
remarkable impact on cerebellar learning (e.g., the IO-DCN
plasticity). Finally, DCN neurons could process not just two
but even three forms of plasticity coming fromMF-DCN, PC-
DCN, and potentially also IO-DCN synapses. Therefore, fur-
ther experimental investigation on plasticity of synapses im-
pinging on DCN neurons is needed.

The robotic cerebellar models need themselves to be im-
proved by implementing more realistic spiking networks and
learning rules. For example, the variety of plasticities imping-
ing on PC and DC synapses is not yet represented in the
models. Moreover, the granular layer needs still to be fully
implemented. Finally, robotic simulations will have to be
counterchecked by performing biological experiments in
which critical plasticities can be selectively switched off to
see whether comparable alterations emerge in animal

behavior. Genetic mutant mice with inducible cell-specific
alterations may be used to selectively block one or more plas-
tic mechanisms. Alternatively, optogenetics may be used to
switch on-off plasticity at certain synapses.

In conclusion, distributed plasticity is opening a new per-
spective for interpreting the complex processes underlying
cerebellar learning, and its understanding needs to make use
of the new tools provided by neural circuit modeling and
neurorobotics in combination with advanced biological tech-
niques for selective brain circuit control and monitoring. It is
also envisaged that new robotic controllers and robots embed-
ding distributed plasticity rules will demonstrate improved
versatility and self-adapting properties allowing in turn to bet-
ter understand how the forward/feedback controller operations
of the cerebellum take place in nature.
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