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Cerebellarlike Corrective Model Inference Engine
for Manipulation Tasks

Niceto Rafael Luque, Jesis Alberto Garrido, Richard Rafael Carrillo,
Olivier J.-M. D. Coenen, and Eduardo Ros

Abstract—This paper presents how a simple cerebellumlike
architecture can infer corrective models in the framework of a
control task when manipulating objects that significantly affect the
dynamics model of the system. The main motivation of this paper
is to evaluate a simplified bio-mimetic approach in the framework
of a manipulation task. More concretely, the paper focuses on
how the model inference process takes place within a feedforward
control loop based on the cerebellar structure and on how these
internal models are built up by means of biologically plausible
synaptic adaptation mechanisms. This kind of investigation may
provide clues on how biology achieves accurate control of non-
stiff-joint robot with low-power actuators which involve control-
ling systems with high inertial components. This paper studies how
a basic temporal-correlation kernel including long-term depres-
sion (LTD) and a constant long-term potentiation (LTP) at parallel
fiber-Purkinje cell synapses can effectively infer corrective models.
We evaluate how this spike-timing-dependent plasticity correlates
sensorimotor activity arriving through the parallel fibers with
teaching signals (dependent on error estimates) arriving through
the climbing fibers from the inferior olive. This paper addresses
the study of how these LTD and LTP components need to be well
balanced with each other to achieve accurate learning. This is of
interest to evaluate the relevant role of homeostatic mechanisms
in biological systems where adaptation occurs in a distributed
manner. Furthermore, we illustrate how the temporal-correlation
kernel can also work in the presence of transmission delays in
sensorimotor pathways. We use a cerebellumlike spiking neural
network which stores the corrective models as well-structured
weight patterns distributed among the parallel fibers to Purkinje
cell connections.

Index Terms—Adaptive, biological control system, cerebellum,
learning, plasticity, robot, simulation, spiking neuron.

I. INTRODUCTION

ONTROLLING fast non-stiff-joint robots accurately with
low-power actuators is a difficult task which involves high
inertia. Biological systems are, in fact, non-stiff-joint “plants”
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driven with relatively low-power actuators. However, in this
case, control schemes require building accurate kinematic and
dynamic models (dynamic models would not be required in the
case of very stiff joint robots with inappreciable inertia). Even
if the basic dynamics model is very accurate, manipulating
tools and objects will affect this base model. This will lead to
significant distortions along the desired movements, affecting
the final accuracy. Therefore, these systems require adaptive
modules for tuning the corrective models to specific object or
tool manipulation. This challenge has been smartly solved by
the biological systems by using the cerebellum as a force, stift-
ness, and timing control machine in every human movement.
The cerebellar cortex performs a broad role in different key
cognitive functions [1]. Three different layers constitute the
cerebellar cortex—the molecular layer, the Purkinje layer, and
finally, the granular layer. The cerebellar cortex seems to be
well structured into microzones [2] related to a specific soma-
totopic organization in sensor and actuator areas. The human
cerebellum involves about 10 000 000 Purkinje cells receiv-
ing excitatory inputs from parallel fibers (150000 excitatory
synapses at each Purkinje cell). Each parallel fiber synapses on
about 200 Purkinje cells; these parallel fibers are granule cell
axons. These granule cells are excited by mossy fibers (with
afferent connections from the spinal cord, with sensory and
motor estimates). Each Purkinje cell receives further excitatory
synapses from one single climbing fiber. This connection is so
strong that the activity from a single climbing fiber can drive
the Purkinje cell to fire [3]. These spikes from the Purkinje
cells generated by climbing fibers are called complex spikes,
while the Purkinje cell spikes generated by the activity received
from the parallel fibers are called simple spikes. Basket cells,
being activated by parallel fiber afferents, can inhibit Purkinje
cells. Finally, Golgi cells receive input from parallel fibers,
mossy fibers, and climbing fibers, and inhibit granule cells. The
output of a Purkinje cell is an inhibitory signal to the deep
cerebellar nuclei [3] (Fig. 1). Granule cells and Purkinje cells
play an important role in pattern recognition [4]. We can assume
that the granular layer adaptation mechanism is essentially
unsupervised [5] toward enhancing information transmission.
In this layer, an efficient recoding of mossy fiber activity takes
place, improving the learning capability in subsequent stages
(granular cell-Purkinje cell synapse). The cerebellum seems to
play a crucial role in model inference within manipulation tasks
but the way this is supported by actual network topologies,
cells, and adaptation properties is an open issue.

We have addressed the study of how this model inference
task can be achieved in a local and distributed manner with
a basic cerebellumlike architecture based on spiking neu-
rons. Furthermore, we evaluate how spike-timing-dependent
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Fig. 1. Scheme of the cerebellum organization [6]. This scheme shows the
most relevant connections within a cerebellar module. The cerebellar module
presents different connections communicating different circuit elements in
closed loops. Mossy fibers contact granule cells (GrC) and DCN cells which,
in turn, receive inhibition from the same common set of Purkinje cells (PC).
Moreover, the 10 cells project climbing fibers that contact PC which also are
projected to DCN cells.

plasticity (STDP) provides an efficient learning rule for this
task. We do this by using a simple temporal-correlation kernel
[long-term depression (LTD)] and a constant compensating
long-term potentiation term (LTP) as the adaptation mecha-
nism at the parallel fiber (PF)-Purkinje cell (PC) synapses. We
explore how the LTP and LTD components of this learning
rule need to be well balanced to achieve an acceptable perfor-
mance. Although different systems that potentially compensate
transmission delays have been proposed [7], [8]; in this paper,
we explicitly avoid compensating them. The correlation kernel
is able to correlate sensorimotor activity with error estimates
without explicitly taking into account the transmission delays.
This inferred model is therefore trajectory-specific. By means
of a certain correlation kernel, the effect of several input spikes
on plasticity is accumulated in a reduced number of variables
without the necessity of storing spike times. This makes this
correlation kernel computationally efficient for event-driven
processing engines, as the one used in this paper, EDLUT
[9]. In this paper, we explicitly evaluate how these corrective
models are structured in a distributed manner among different
synapses in the PF-PC connection space. The possibility of
monitoring this spatio-temporal learned weight pattern repre-
sents a powerful tool to interpret how models are inferred to
enhance the accuracy in a control task. We evaluate how this
learning engine with specific (fixed gain) LTP and correlation-
based LTD components can infer different corrective dynamic
models corresponding to the manipulation of objects of differ-
ent masses.

Control schemes of biological systems must cope with sig-
nificant sensorimotor delays (100 ms approximately) [10]-[12].
Furthermore, actuators are very efficient but have a limited
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power and have to deal with viscoelastic elements. In order to
deal with all these issues, biology has evolved efficient “model
inference engines” to facilitate adaptive and accurate control of
arms and hands [13]-[15]. A wide range of studies have proven
the crucial role of the cerebellum in delivering accurate correct-
ing motor actions to achieve high-precision movements even
when manipulating tools or objects (whose mass or moment
of inertia significantly affects the base dynamics models of the
arm-hand) [15]-[17]. For this purpose, the cerebellum structure
needs to infer the dynamics model of the tool or object under
manipulation [18] and store it in a structured way that allows
an efficient retrieval of corrective actions when manipulating
this item. There are scientific evidences of synaptic plastic-
ity at different sites of the cerebellum and the sensorimotor
pathway. The synaptic connection between PFs and PCs seems
to have a significant impact on the role of inferring models
of sensorimotor correlations for delivering accurate corrective
commands during control tasks in most cerebellar models
[19]-[21]. Furthermore, the adaptation at this site seems to be
driven by the activity coming from the inferior olive (I0) and
by the way this activity correlates with the activity received
through the PFs.

Within a cerebellarlike cell-based structure, the corrective
model is inferred in a distributed way among synapses. Fur-
thermore, this scheme based on distributed cell populations
allows several models to be inferred in a non-destructive way
by selecting a specific population each time.

The main goal of this paper is the study of how an adaptive
cerebellumlike module embedded in the control loop can build
up corrective models to compensate deviations in the target
trajectory when the dynamics of the controlled plant (arm-
hand-object in the case of a human operator) are altered due to
manipulation of heavy objects (whose mass significantly affects
the basic model dynamics). We address the study of how this
corrective model is inferred through a biologically plausible
local adaptation mechanism. To better illustrate this issue, we
have simplified the cerebellum architecture.

Through this simple cerebellar structure, we have monitored
how the weight’s space adapts to a distributed stable model that
depends on the basic network topology, the target trajectory,
and model deviations.

The IO is an important paracerebellar center whose func-
tional role is still an open issue [5], [6], [22]-[25]. Different
research groups have studied its potential role in delivering a
teaching signal during accurate movements [26]-[29]. The 10
is the only source of cerebellar climbing fibers (CFs) which
target the Purkinje cells (PC). Each PC receives a single CF
which massively connects with this single neuron strongly
driving its activity. When a spike of the IO reaches its target
PC, the Purkinje cell fires a complex spike. Each CF connects
approximately with ten PCs. Nevertheless, the 1O fires at a very
low frequency (between 1-10 Hz, average 1 Hz) and therefore,
the amount of spikes coming from the CFs is almost negligible
compared to the activity of the PCs generated by the parallel
fibers (simple spikes) [30]-[33].

Neurophysiologic studies have revealed that there are many
adaptation mechanisms at the cerebellum. Each of them may
have a specific purpose (segmentation, maximization of infor-
mation transference, correlation of sensorimotor signals, etc.)
[34], [35]. In particular, the activity of the IO has a strong
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impact on the PF-PC synaptic adaptation [36]. The adaptation
of these synapses mediated by this activity seems to play a
crucial role in correlating the sensorimotor activity with a
“teaching signal” (arriving from the 10) [19], [20], [37], [38].
This teaching signal can be seen as an “intentional signal” that
highlights, in time domain, the accuracy of the movement that is
being performed. As proposed in [12], [39], this signal may be
related to the error during a movement. But since the IO is only
capable of very low-frequency output spikes (typically, output
activity between 1 and 10 Hz), it does not encode the error
quantity accurately in only one movement repetition, but rather
provides a progressive estimate. Therefore, during repetitions
of movements, its statistical representation may reproduce the
error evolution more accurately [28], [40], [41] and thus, it can
be a useful guide toward efficient error reduction to achieve
accurate movements.

II. MATERIALS AND METHODS

For extensive spiking network simulations, we have further
developed and used an advanced event-driven simulator based
on LookUp Tables [9], [42], [43]. EDLUT is an open-source
tool [42], [43] which allows the user to compile the response
of a predefined cell model (whose dynamics are driven by a
set of differential equations) into lookup tables. Then, complex
network simulations can be performed without requiring an in-
tense numerical analysis. In this research, as a first approxima-
tion, neurons were evolved versions of leaky integrate-and-fire
neuron models with the synapses represented as input-driven
conductances.

For the experimental work, we have used a biomorphic robot
plant, a simulated LWR (lightweight robot). This robot has been
developed at DLR [44]. The LWR’s arms are of specific interest
for machine-human interactions in unstructured environments.
In these scenarios, the use of low-power actuators prevents po-
tential damage on humans in case of malfunctioning. Although
a real impact on robotic applications is beyond the scope of
this paper, the target application scenario of this robotic robot
based on non-stiff low-power actuators shares certain character-
istics with the daily manipulation tasks performed by humans.
Therefore, we considered this robotic platform an appropriate
tool for validating the cerebellar-based model inference engine
under study.

For the sake of simplicity, in our simulations, we use a
simulator of this robot in which we have fixed some joints to
reduce the number of actual joints to three, limiting the number
of degrees of freedom to three.

A. Training Trajectory

The described cerebellar model has been tested in a smooth
pursuit task [45]-[47]. A target (desired target movement)
moves along a repeated trajectory, which is composed of verti-
cal and horizontal sinusoidal components. The target movement
describes the “eight-shape” trajectories illustrated in Fig. 2,
whose equations, in angular coordinates, are given by the
following expressions (1). We have evaluated the learning capa-
bility performing a goal movement along this target trajectory.
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Fig. 2. Three joint periodic trajectories describing eight-shape move-

ments in joint coordinates. This trajectory implies movements of three
joints. (a) Cartesian coordinates of the eight-like trajectory. (b) 3-D view of the
eight-like trajectory. (c) X- and Z-axes representation of this target trajectory.
(d) Y and Z-axes representation of the eight-like target trajectory.

Each joint movement in our task is defined by ¢;, g2, and g3,
respectively,

ql = Ay sin(nwt) + Cy
q2 = Ay sin(mt + 0) + Cy

q3 = Ag sin(nt + 20) + Cs. (1)

This trajectory with the three joints which are moving follow-
ing sine shapes is shown in Fig. 2. We chose fast movements
(1 s for the whole target trajectory) to study how inertial
components (when manipulating objects) are inferred at the
cerebellar structure. Slow movements would hide changes in
the dynamics of the arm+object model, since they would not
have significant impact when performing very slow movements.

Though for the sake of simplicity, we have used a single
eight-like trajectory in each trial, consecutive eight-like trajec-
tories have also been tested leading to similar results (provided
that the corrective torque values do not get saturated along the
global trajectory).

B. Control Loop. Interfacing the Cerebellum Model
With a Simulated Robot

Some studies indicate that the brain may plan and learn
to plan the optimal trajectory in intrinsic coordinates [14],
[48]-[50]. The central nervous system is able to execute three
major tasks—the desired trajectory computation in visual co-
ordinates, the task-space coordinates translation into body co-
ordinates, and finally, the motor command generation. In order
to deal with variations of the dynamics of the operator arm, we
have adopted an feedback error learning scheme [51] in con-
junction with a crude inverse dynamic model. In this scheme,
the association cortex provides the motor cortex with the de-
sired trajectory in body coordinates, where the motor command
is calculated using an inverse dynamic arm model. On one
hand, the spinocerebellum—magnocellular red nucleus system
provides an internal neural accurate model of the dynamics of
the musculoskeletal system which is learned with practice by
sensing the result of the movement. On the other hand, the
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Fig. 3. Control loop. The adaptive module (cerebellarlike structure) con-

tributes to the actual torques being received by the “crude inverse dynamics
robot model” to enhance the accuracy of the movement.

cerebrocerebellum—parvocellular red nucleus system provides
a crude internal neural model of the inverse dynamics of the
musculoskeletal system which is acquired while monitoring the
desired trajectory [51]. The crude inverse dynamic model works
neck to neck with the dynamical model by updating the motor
command by predicting a possible error in the movement.
As it is illustrated in Fig. 3, the cerebellar pathways follow
a feedforward architecture, in which only information about
sensory consequences of incorrect commands can be obtained
(i.e., the difference between actual and desired joint positions of
the arm). The natural error signal for learning motor commands
is the difference between actual and correct commands; this
implies, for example, that if M muscles control N sensor
dimensions involved in a task, then N-sensory errors must be
converted into M -motor errors (M x N complexity). How to
use this sensor information to drive motor learning is the so-
called distal error problem [46], [52]. In order to overcome this
motor error problem, (the cerebellum in our scheme provides
torque corrections) the implemented spiking cerebellum used
an adaptation mechanism described in Section II-D which can
correlate the actual and desired states toward the generation of
accurate corrective motor commands.

In our model, the cerebellum receives well-structured inputs
encoding the planned trajectory. We assume that the errors
occurred during the movement are encoded at the IO and
transferred (at low firing rates) to the cerebellum through the
climbing fibers.

We have built a module to translate a small set of signals
(encoding the arm’s desired state) into a sparse cell-based spike-
timing representation (spatio-temporal population coding). This
module has been implemented using a set of input fibers with
specific receptive fields covering the working range of the
different desired state variables (position and velocity of the dif-
ferent joints). In this way, the robot [analog domain consisting
of trajectory planer, trajectory generator, crude inverse dynamic
arm model, and arm plant (Fig. 3)] has been interfaced with the
spiking cerebellar model (spiking domain).

In our control loop, the desired states (positions and veloci-
ties) that follow a certain trajectory are obtained from an inverse
kinematic model computed by other brain areas [48] and then,
they are translated into joint coordinates. These desired arm
states are used at each time step by a crude inverse arm
dynamics model to compute crude torque commands which are
added to the cerebellum corrective torques. This control loop is
illustrated in Fig. 3.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 5, OCTOBER 2011

Fig. 3 illustrates how the trajectory planner module delivers
desired positions and velocities for a target trajectory. The kine-
matics module translates the trajectory Cartesian coordinates
into joint coordinates. The “crude inverse dynamics arm model”
calculates the target torque in each joint which are necessary to
roughly follow the target trajectory. But this crude arm model
does not take into account modifications in the dynamics model
due to object manipulation. Thus, if only these torque values
are considered, the actual trajectory may significantly differ
from the desired one. The adaptive cerebellar component aims
at building corrective models to compensate these deviations,
for instance, when manipulating objects.

In Fig. 3, the adaptive cerebellarlike structure delivers cor-
rective actions that are added to compensate deviations in the
base dynamics plant model when manipulating objects. In this
feedforward control loop, the cerebellum receives a teaching
error-dependent signal and the desired arm state so as to pro-
duce effective corrective commands. Total torque is delayed
(on account of the biological motor pathways) and supplied to
the robot plant §;,t4;. The difference between the actual robot
trajectory and the desired one is also delayed d; o and used
by the teaching signal computation module to calculate the IO
activity that is supplied to the cerebellum as a teaching input
signal (for the computation of the cerebellar synaptic weighs).
Using this control loop architecture, an accurate explicit model
of the musculoskeletal arm inverse dynamics is not necessary.
The cerebellum can infer corrective models tuned to different
tools which may affect the dynamics of the plant (arm+object).

C. Cerebellum Model

The proposed cerebellarlike architecture, organized in cere-
bellar microzones [2] (somatotopic arrangement), tries to cap-
ture some cerebellum’s functional and topological features [3],
[53]. This cerebellum model consists of the following layers:
(Fig. 4)

 Input layer (120 cells). This layer represents a simplifica-

tion of the mossy and granular layers of the cerebellum
and drives PCs and cells of the deep cerebellar nuclei
(DCN). The goal of this simplification is to facilitate the
study of how the sensorimotor corrective models are stored
in adapted weights at the PF-PC connections. This input
layer has been divided into six groups of 20-grouped cells
which carry the desired joint velocity and position infor-
mation (these desired position and velocity coordinates
can be thought as efferent copies of the motor commands
or “motor intention”); for the propioceptive encoding,
three groups of cells encode the desired joint positions
(one group per joint) and the other three encode the
desired joint velocities. The analog position and velocity
transformation into the fiber spike activity is carried out
by using overlapping radial basis functions (RBF) (Fig. 5)
[54] as receptive fields of the input-variable space, see (2)
(joint-specific angular position)

(input variable—p;)2

Imossyi =€ 207 0<i<n
where = size of mossy group, (2.A)
where the mossy behavior is given by :
dv;
Tmi?z =~V (t) + RiImossyi (2.B)
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ing the error are sent (upper downward arrow) through the inferior olive (I0).
Outputs are provided by the deep cerebellar nuclei (DCN) (lower downward
arrow). The DCN collects activity from the input layer (excitatory inputs which
provide DCN with a basal activity when an input stimulus is presented) and the
Purkinje cells (inhibitory inputs). The DCN activity represents the corrective
torque generated by the cerebellum. This output activity is transformed into a
proper analog torque signal by means of a buffer in which the DCN activity is
accumulated. This activity buffer is used to compute an analog average value
that acts as a corrective torque.
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Fig. 5. Encoding of cerebellar input signals. Translation from joint-related
analog variables (angular positions and velocities) into spike trains is carried
out using overlapping RBFs as receptive fields in the analog domain. One-
dimensional values are transformed into multidimensional current vectors (one
for each RBF). Each current value is integrated using an integrate-and-fire
(I & F) neuron model and determines the output activity of an input cell of
the cerebellum model.

where p; is the mean and o the standard deviation of
7 RBF. Related to the cell dynamics, 7,,, is the resting
time constant, v; the membrane potential, /nossy, the input
current, and R?; is related to the resting conductance of the
membrane. For the sake of simplicity, in our model, we
have not included a more detailed cellular structure (Golgi
cells, interneurons, mossy fibers, etc.). We have adopted
well-structured noise-free patterns to encode sensorimo-
tor signals to partially embed potential roles typically
performed in the granular layer [6], [55] (such as noise
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reduction, pattern separation, etc.). Parallel fibers are the
output of this layer.

e Inferior olive cells (IO) (48 cells). This layer consists of
six groups of eight cells. It translates the error signals into
teaching spikes to the Purkinje cells. The IO output carries
the teaching signal used for supervised learning (see STDP
section).

* Purkinje cells (PC) (48 cells). They are divided into six
groups of eight cells. Each input cell sends spikes through
excitatory connections to PCs, which receive teaching sig-
nals from the 10. The PF-PC synaptic conductances are set
to an initial average value (15 nS) at the beginning of the
simulation and are modified by the learning mechanism
during the training process.

e Cells of the DCN (24 cells). The cerebellum model output
is generated by six groups of these cells (two groups of
four cells per joint) whose activity provides corrective
torques to the specified arm commands. The corrective
torque of each joint is encoded by a couple of these
antagonist groups, being one group dedicated to com-
pensate positive errors and the other one to compensate
negative errors. Each neuron group in the DCN receives
excitation from every input layer cell and inhibition from
the two corresponding PCs. In this way, the PC-DCN-10
sub circuit is organized in six microstructures (Fig. 4),
three for positive joint corrections (one per joint) and three
for negative joint corrections (one per joint).

We have used leaky integrate-and-fire (I&F) neurons with
synapses modeled as variable conductances to simulate
Purkinje cells and DCN cells. These models are a modified
version of the spike response model [56]. These synaptic
conductance responses were modeled as decaying exponential
functions triggered by input spikes as stated by (3.A)—(3.C).
Thus, these neuron models account for synaptic conductance
changes (driven by pre-synaptic activity) rather than simply for
current flows, providing an improved description over more ba-
sic I&F models. Table I contains the neuron model parameters
of the Purkinje cells and DCN cells

) — 0, t <tp 3A
geXC( ) B gcxc(tO) : e_ﬁ t 2 tO ( ' )
y 0, t <tp 3B
i) = ginn(to) - e T, t2t G-B)
AV,
mW :gexc(t)(Eexc - Vm) + ginh(t)(Einh - Vm)
+ Grest (Erest - Vm) (3C)

where gexe and gj,, represent the excitatory and inhibitory
synaptic conductance (time constant) of the neuron. 7.y and
Tinh Tepresent the time constants of the excitatory and in-
hibitory synapses, respectively. Synaptic inputs through several
synapses of the same type can simply be recursively summed
when updating the total conductance if they have the same
time constants, as indicated in (4). Membrane potential (V;,,)
is defined through (3.C) depending on the different reverse
potentials and synaptic conductances

gexc(post—spike)(t) = chc.,j + gexc(pre—spike)(t) “4)

G oxc,j 1s the weight of synapse j; a similar relation holds for
inhibitory synapses.
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TABLE 1
NEURON MODEL PARAMETERS FOR THE SIMULATIONS [57]-[61]. IN THE TABLE, nS STANDS FOR NANOSIEMENS AND syn STANDS FOR SYNAPSES
Purkinje cells DCN cells
Refractory period 2ms Ims
Membrane capacitance S00pF 2pF
Total excitatory peak 1.3nS-175000syn.-10% [nS-7syn.
conductance
Total inhibitory peak . )
conductance 3nS-150syn. 30nS-1syn.
Firing threshold -52mV -40mV
Resting potential -70mV -70mV
Resting conductance 16nS 0.2nS
Mem. pot. time constant (t,,) 20ms to 30ms 10ms
Exc. syn. time constant (Tey) 1.2ms 0.5ms
Inh. syn. time constant (T;,,) 9.3ms 10ms
(a) ’ Learning Laws (b) Learning Laws
o | I
09r 1 : :
X t--- 7@
08k x*e !
sin(x) I
L o CRmene .
0.7 sin(x) 08 }
206f = ;
= - 06 1--f-
§ 0.5F § I
= = |
3 3 I
g 04r 04 aoq-l
< < :
03} !
0.2 i b
02} !
|
01t or
—@ Spke 01,155 Sin(x) e xex |
0 L Il L 1 1
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Contribution last 10 spike arrival (ms 102)

Time elapsed since 10 spike arrival (s)

Fig. 6. LTD integral kernel. (a) Representation of a basic integral kernel (x - e~%) which has a rather wide peak that makes PC synaptic weights to decrease
more prominently and a more complex integral kernel (sin(2)2?) - e =¥ which has a sharper peak. (b) This plot shows the amount of LTD at a particular synapse
depending on the IO spike arrival time elapsed since the PF spikes for different integral kernels. The figure includes a comparison between the basic integral kernel
(z - e~*) and a more complex integral kernel (sin(z)20) - e=* which has a peak 100 ms after the input spike. The PC receives three spikes through a particular

CF at times 0.0, 1, and 1.5 s.
D. STDP

The studied cerebellar model only includes synaptic plas-
ticity at the PF-PC connections. The changes of the synaptic
efficacy for each connection are driven by pre-synaptic activity
(STDP) and are instantaneous.

In our model, since there are delays in the transmission
of joint torque values and joint position measurements, the
trajectory error measurements (which are used to calculate the
teaching signal) reach the cerebellum with a 100-ms delay.
This means that the learning mechanism must learn to provide
corrective torque predictions.

This plasticity has been implemented including LTD and LTP
mechanisms in the following way:

a) LTD produces a synaptic efficacy decrease when a spike
from the IO reaches a PC, as indicated in (6.A). The
amount of efficacy which decreases depends on the pre-
vious activity arrived through the PF (input of the cere-
bellar model). This previous activity is convolved with
an integral kernel as defined by (5). This mainly takes
into account those PF spikes which arrived 100 ms before
the IO spike (see Fig. 6). This correction is facilitated
by a time-logged “eligibility trace” [45], [47], [62], [63],
which takes into account the past activity of the afferent

PF. This trace aims to calculate the correspondence in
time between spikes from IO (error-related activity) and
the previous activity of the PF which is supposed to have
provoked this error signal. The eligibility trace idea stems
from experimental evidence showing that a spike in the
climbing fiber afferent to a Purkinje cell is more likely
to depress a PF-PC synapse if the corresponding PF has
been firing between 50 and 150 ms before the 10 spike
(through CF) arrives at the PC [45], [47]

k(t) = e~ (t=tpostsynapticspike) sin(t — tpostsynapticspike)20

()

b) LTP produces a fixed increase in synaptic efficacy each
time a spike arrives through a PF to the corresponding PC
as defined by (6.B). With this mechanism, we capture how
an LTD process, according to neurophysiologists studies
[64], can be inverted when the PF stimulation is followed
by spikes from the IO or by a strong depression of the
Purkinje cell membrane potential.

The strength of these two mechanisms needs to be tuned to
complement and compensate each other. These biological LTP-
LTD properties at PF-PC synapses have been tried to be emu-
lated in different fields, i.e., in the adaptive filter [65] theory by
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using the heterosynaptic covariance learning rule of Sejnowski
[66] or in the adaptive control theory by using the least-mean-
square learning rule [67]. Different alternative temporal kernels
are shown in Fig. 6. The sharper the integral kernel peak is,
the more precise the learning becomes. On the other hand, this
leads us to a slower synaptic weight adaptation. However, LTP
can lead the weight recruitment to be compensated by future IO
activity. This situation drives us to faster synaptic weight satu-
ration where LTP can hardly carry out the weight recruitment
for future IO activity. After the main peak in the correlation
kernel, a second marginal bump can be seen as a consequence
of the mathematical model used for modeling the correlation
engines. The chosen mathematical models of the kernel allow
accumulative computation in an event-driven engine, avoiding
the necessity of integrating the whole correlation kernel each
time a new spike arrives. Therefore, these correlation models
are computationally efficient in the framework of an event-
driven simulation scheme, such as EDLUT [9], but they suffer
this second marginal peak that can be considered noise in the
weight integration engine.
This is indicated in the following (6):

IOspike

LTZ)7 Vi, Awi = — k'(t - tIOspike)éGRspikefi (t)dt
. (6.A)
LTP, Aw; = . (6.B)

E. Teaching Signal of the Inferior Olive

The crude inverse dynamics controller generates motor
torque values for a rough control, but the long delays in the
control loop prevent the online correction of the trajectory in a
fast reaching task using a classical controller with a continuous
feedback. In the studied control model, the trajectory error
is used to calculate the teaching signal. This teaching signal
follows (7)

€delayed, — Kpi * €position; + Km' * Evelocity,
1=1,2,3,...joint

epositioni = (qidesired - qireal) [(t + tpred)i - tz]

Evelocityi = (qidesired - qireal) [(t + tpred)i - tz] (7)

where K; - €position, Tepresents the product of a constant value
(gain) at each joint K,; and the position error in this joint [dif-
ference between desired joint position and actual joint position
(Qidesired - Qireal)]'

Ky - Evelocity, Tepresents the product between a constant
value (gain) at each K,; joint and the velocity error in this
joint [difference between desired joint velocity and actual joint
VelOCity (Qidesired - q.ireal)]-

The IO neurons synapse onto the PCs and contribute to drive
the plasticity of PF-PC synapses. These neurons, however, fire
at very low rates (less than 10 Hz), which appears problematic
to capture the high-frequency information of the error signal of
the task being learned. This apparent difficulty may be solved
by their irregular or chaotic firing [13], [41], [68]. This is a very
important property, which has the beneficial consequence of
statistically sampling the entire range of the error signal over
multiple trials (see below). Here, we implemented this irregular
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firing using a Poisson model [69] for spike generation. The
weight adaptation was driven by the activity generated by the
10, which encoded the teaching signal into a low-frequency
probabilistic spike train (from O to 10 Hz, average 1 Hz)
[5], [41].

We modeled the IO cell responses with probabilistic Poisson
process. Given the normalized error signal €(¢) and a random
number 7(t) between 0 and 1, the cell fired a spike if () >
n(t); otherwise, it remained silent [47]. In this way, on one
hand, a single spike reported accurately timed information
regarding the instantaneous error; and on the other hand, the
probabilistic spike sampling of the error ensured that the whole
error region was accurately represented over trials with the cell
firing almost ten spikes per second. Hence, the error evolution
is accurately sampled even at a low frequency [12]. This
firing behavior is similar to the ones obtained in physiological
recordings [41].

LTD and LTP play complementary roles in the model in-
ference process. The LTP implemented at the PF-PC synapses
was a non-associative weight increase triggered by each input
cell spike [64]. The LTD was an associative weight decrease
triggered by spikes from the inferior olive [26], [27]. This
model of LTD uses a temporal kernel, shown in Fig. 6, which
correlates each spike from the 10 with the past activity of the
parallel fiber [10], [45], [70]. Correlation-based LTD allows
the adjustment of specific PF-PC connections to reduce the
error according to the IO activity. When IO spikes are received,
the synaptic weights of the PF-PC connections are reduced
according to the temporal-correlation kernel and to the activity
received through the PF. In this way, we reduce the probability
of production of simple spikes by PC due to the activity coming
from the PFs through these specific connections. Therefore, the
IO effectively modulates the spatio-temporal corrective spike
patterns. In this model, a learning state in the cerebellum (PF-
PC weights) can be seen as a bidimensional function which
relates each PF and PC combination with their corresponding
synaptic weight [Fig. 7(c)].

Physiologically, the time matching of the desired and actual
joint states can be understood by the fact that the trajectory error
would be detected at the level of the spinal cord through a direct
drive from the gamma motoneurons to the spinal cord [71].

III. SIMULATIONS AND RESULTS

We have carried out several simulations to study different is-
sues: a) How LTD and LTP need to be balanced to optimize the
adaptation performance; b) how the temporal-correlation kernel
(integral kernel) works even in the presence of sensorimotor
delays; and ¢) how the same learning mechanism can adapt the
system to compensate different deviations in the basic model
dynamics (due to manipulating objects of different weights).

A. LTD Versus LTP Trade-Off

At the beginning of the learning process (before the con-
nection weights are adjusted), the spikes received from the
input fibers excite the DCN cells, producing a “bias correc-
tion” term on the motor commands. The role of the cerebellar
PF-PC-DCN loop is to specifically inhibit this bias term ac-
cording to a spatio-temporal pattern that is inferred during
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Cerebellum state after 300 trajectory learning iterations. (a) Input activity at the cerebellum. The input layer produces a set of spikes after the

transformation from analog domain into spike domain These spikes are transmitted directly by PF. This activity (desired positions and velocities) keeps on
constant during all iterations. (b) DCN output activity generated by those synaptic weights. Error corrections are accomplished by changes in the activity of PCs
that, in turn, influence the activity of the DCN [72], which afterward is translated into analog torque correction signals. Each group of four DCN cells encodes
the positive or negative part of a joint corrective torque. The more activity the positive/negative group has, the higher/lower corresponding corrective torque is
generated. (c) PC-PF synaptic weight representation. Inz-axis, we can see the source cells (PFs). In y-axis, target cells (PCs) are shown. Dark colors represent
lower synaptic weights, thus, the corresponding DCN cells are more active. We can see six well-defined rows, each row represents weights related with the positive
and negative torque output of the three joints (g3, g2, and q1), and six well-defined columns (related with the input activity of the PF corresponding to the desired
position and velocity for the three joints). (d) Output torque after analog transformation from the DCN output spikes. These corrective torque curves have a profile
strongly related with the number of DCN cells assigned per joint; thus, increasing the quantity of DCN per joint will generate a smoother corrective profile.

movement executions and to further compensate other devi-
ations generated by the manipulation of different objects or
other elements, affecting the dynamics of the initial “arm
plant” (without object under manipulation). The PF-PC-DCN
loop transmits an activity pattern which is adapted taking into
account the teaching signals provided by the IO (described in
the previous section).

In the first simulations, the arm is manipulating a 1-kg mass
object. This mass significantly affects the dynamics of the
arm+object. Therefore, the actual trajectory (without correc-
tive support) deviates significantly from the target trajectory.
We have studied how the cerebellar module compensates this
deviation building a corrective model.

Fig. 7 illustrates how the corrective model is acquired
through learning and structured in distributed synaptic weight
patterns. When the arm moves along a target trajectory, dif-
ferent input cell populations are activated. They produce a
temporal signature of the desired movement. Meanwhile, the
IO continuously transfers trajectory error estimates (teaching
signals) which are correlated with the input signature. In Fig. 7,
the system adaptation capability is monitored. This helps to
interpret how the corrective model is continuously structured.
Similar monitoring experiments in much simpler scenarios and
smaller scale cell areas are being conducted in neurophysio-
logic studies [6] to characterize the adaptation capability of
neurophysiologic systems at different neural sites.

When manipulating heavy objects which do not properly fit
the basic plant model, the followed trajectory drifts from the
desired one before learning. This deviation is more prominent
when the desired trajectory changes direction [see Fig. 7(a)]
due to the arm’s inertia. After learning, the cerebellum output
counteracts this inertia, generating higher torques during these
changes of the desired trajectory direction [see Fig. 7(d)]. The
weight matrix learned by the cerebellum reflects the moments
when higher corrective torque values are supplied. By looking
at Fig. 7(b) and (d), we can see that the higher corrective
torque is produced when the desired trajectory joint coordi-
nates change direction. This occurs in the peaks of the sine
waves describing the desired trajectory and corresponds to the
activation of the higher and lower input fibers of each block
[left and right side of the six weight columns of Fig. 7(c)].
To generate a high corrective torque, the cerebellum must
unbalance the magnitude of the positive and negative parts of
the joint corrective output [q+ and q— in Fig. 7(b)] which
is calculated from the activity of the DCN cells. These DCN
cells are grouped by joints. A higher activity affecting positive
corrections in a joint produces higher corrective torque. Since
PCs inhibit DCN cells, a low PC activity is required for a
high DCN activity and vice versa. To obtain a low PC activity,
low PF-PC weights are required, which corresponds to small
dark squares in Fig. 7(c). Small light squares correspond to
high values of the weights. Looking at both sides of the six
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weight columns of Fig. 7(c), we can observe how the weight
values alternate between high and low in adjacent rows which
alternately encode the weights corresponding to the positive and
negative parts of each joint corrective torque.

During the learning process, the corrective model is captured
in the PF-PC connections. In this way, the movements become
more accurate, the error decreases and therefore, also the ac-
tivity of the IO is reduced. This allows the learned models to
become stable once the error reaches appropriate values.

The learning performance is characterized by using four
estimates calculated from the mean absolute error (MAE) curve
[73]. For the calculation of the MAE of a trajectory execution,
we have considered the addition of the error in radians produced
by each joint independently.

1) accuracy gain (estimates the error reduction rate com-
paring the accuracy before and after learning). This es-
timate helps to interpret the adaptation capability of the
cerebellum when manipulating different objects, since the
initial MAE for each of these manipulated objects may be
different

Accuracy Gain = M AEjpitial
1 n
— ( > MAE(ﬁnali)> n=230; (8)
iz

2) final error (average error over the last 30 trials)

1 n
Final Error = ( > MAE(ﬁnal_,-)> n=30; (9)
n i=0

3) final error stability (average of standard deviation over the
last 30 movement trials)

Final Error Stability

1
= Z (0 (MAE(ﬁnal—i))) n=230; (10)
1=0

n

n -

4) error convergence speed (number of samples to reach the
final error average)

Error Convergence Speed = j; where

1 & ,
MAE; < (n § MAE(ﬁnali)> 0<j<final. (11)
=0

We have carried out 70 simulations of a complete training
process, where each training process consists of 400 trajec-
tory executions and each trajectory execution is carried out in
1-s simulation time (i.e., the whole system is executed
28000 times). During each of these training processes, the
obtained error in each trajectory execution decreases until it
reaches a final stable value. The obtained MAE of a single
complete training process is shown in Fig. 8(a). We have tested
this learning process with different LTD and LTP components
to evaluate how they affect the adaptation capability of the
system. From each of these training processes (with different
LTD and LTP values), we obtain the performance estimates
defined above (accuracy gain, final error, final error stability,
and error convergence speed). These performance estimates
characterize the adaptation mechanism capability.
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As it is shown in Fig. 8(b) and (c), both LTP and LTD
must be compensated. Low LTD values combined with high
LTP values cause high weight saturation. This can be seen in
Fig. 8(c), in which 3-D final normalized error values of the
first figure are represented in a high flat surface correspond-
ing to high errors. We also have a flat surface close to zero
in Fig. 8(c) (3-D final normalized error stability figure); the
cerebellum output is totally saturated. Therefore, when LTP-
LTD tradeoff is unbalanced (LTP dominating LTD), the system
adaptation capability is low, leading to high error estimators
and useless high stability. On the other hand, when high LTD
values are combined with low LTP values, this causes low
weight saturation. In Fig. 8(c) 3-D plots, we see a good final
average error and a good accuracy gain and convergence speed
but very unstable output. This is also indicated by the error
variance figure estimates which are high in this LTD-LTP
area. A compensated LTD-LTP setting drives us to a high-
accuracy gain and also, to a low and stable final error with high
convergence speed. For instance, if our LTD choice is 0.075,
our LTP must be lower than 0.015 to achieve a proper stable
learning mechanism. In all the following simulations, we have
fixed the LTD and LTP parameters to these values. Therefore,
we illustrate how different model deviations (by different object
manipulations) can be compensated with a fixed and balanced
temporal-correlation kernel and how this correction loop works
even in the presence of different sensorimotor transmission
delays.

B. Learning Temporal-Correlation Kernel Allows Corrective
Model Inference Even in the Presence of Sensorimotor Delays

The cerebellumlike structure previously described works
even with sensorimotor delays by means of the temporal-
correlation kernel which determines the amount of LTD to be
applied. This is summarized in Fig. 9. The results (in Fig. 9)
have been obtained after performing four simulations (each one
for different delay setups) of 400 trajectory executions each. On
the other hand, this temporal-correlation kernel remains robust
not only with different unbalanced delays but also with a non-
perfect matching between sensorimotor delays and the temporal
correlation kernel peak, as it is shown in Fig. 10. These results
have been obtained after performing five simulations (each one
for a different time deviation) of 400 trajectory executions each.

This robustness is achieved because the scheme is using de-
sired coordinates (positions and velocities) which remain stable
across different trials. Nevertheless, with delays mismatching
(between learning kernel inherent time shift and sensorimotor
delays) over 70 ms, this scheme becomes unstable.

C. Learning Different Dynamic Models

The presented cerebellum microstructure and the long-term
plasticity, side by side, facilitate internal model inference. The
cerebellum model adapts itself to infer a new model by using
error signals which are obtained when manipulating this new
object. We study the ability of the cerebellar architecture to
infer different corrective models for dynamics changes on a
base manipulator model.

Under normal conditions, without adding any extra mass
to the end of the effector (arm), the crude inverse dynamics
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Learning characterization. The error taken into account in this learning characterization is a global addition of the absolute joint errors in position from

each link of our robot plant. (a) During the learning process, the movement error decreases along several iterative executions of trials of an eight-like trajectory
benchmark. We evaluate the learning performance using four estimates extracted from the MAE curve: 1) accuracy gain; 2) final error; 3) final error stability;
and 4) error convergence speed. (b) Using these four estimators, we can evaluate how LTP and LTD affect the learning process. We have conducted multiple
simulations with different LTD-LTP tradeoffs to characterize the learning behavior. The goal of an appropriate learning process is to achieve a high-accuracy gain

and a low and stable final error.

model calculates rough motor commands to control the arm
plant. In contrast, under altered dynamics conditions, the motor
commands are inaccurate to compensate for the new under-
gone forces (inertia, etc.), and this leads to distortions in the
performed trajectories. During repeated trials, the cerebellum
learns to supply the corrective motor commands when the
arm plant model dynamics differs from the initial one. These
corrective motor commands are added to the normal-condition
motor commands. Then, improved trajectories are obtained as
the learning process goes on. The cerebellum gradually builds
up internal models by experience and uses them in combination
with the crude inverse dynamics controller. This cerebellum
adaptation is assumed to involve changes in the synaptic effi-

cacy of neurons constituting the inverse dynamics model [74],
as it is shown in our simulation results (Fig. 11).

The performance results of the followed trajectory have
been evaluated during 400 trajectory executions manipulating
different objects attached at the end of the last segment of the
arm of 0.5, 1, 1.5, and 2 kg. Fig. 11 illustrates the performed
trajectory for each simulation with an object of a different mass.
Fig. 12 shows how the cerebellar model is able to learn/infer
the corrective dynamics model for the different objects. The
error curves of Fig. 12(a) (where each sample represents the
error along one eight-like trajectory) show how the control
loop with the adaptive cerebellar module is able to significantly
reduce the error during the training process. Fig. 11 shows that
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Fig. 9. Temporal-correlation kernel for different sensorimotor delays
(delays from 25 to 150 ms have been tested). We have adjusted the correlation
kernel peak position to match (see Fig. 6) the sensorimotor delays of the control
loop illustrated in Fig. 3. As it is shown, the delay value does not affect to a large
extent the obtained performance. The final average error is nearly constant in
these different simulations.
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Fig. 10. Temporal-correlation kernel behavior with different deviations
between sensorimotor delays and the kernel peak (deviation from 50 to
70 ms have been tested). We have evaluated different deviations between the
correlation kernel peak position (see Fig. 6) and the sensorimotor delays of the
control loop illustrated in Fig. 3. As it is shown, despite the kernel peak does
not exactly match with sensorimotor delays, the cerebellum still works and the
final average error keeps on constant. The cerebellum is able to correlate the
delayed sinusoidal inputs and the non-in-phase peak kernel.

manipulating heavier objects means that the starting error is
higher, since the arm dynamics differ from the original one to a
larger extent. Therefore, the cerebellum learns to supply higher
corrective torques, which makes a bigger difference between
the initial and final error. This makes the accuracy gain estimate
higher than in the other cases. On the other hand, for improving
the global accuracy gain, higher forces have to be counteracted
to follow the desired trajectory.

IV. DISCUSSION

This paper focuses on studying how a cerebellarlike adaptive
module, operating together with a crude inverse dynamics
model, can effectively provide corrective torque to compensate
deviations in the dynamics of a base plant model (due to object
manipulation). This is relevant to understand how the cere-
bellar structure embedded in a biologically plausible control
loop can infer internal corrective models when manipulating
objects which affect the base dynamics model of the arm. The
spiking neural cerebellum connected to a biomorphic robot
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plant represents a tool to study how the cerebellar structure
and learning kernels (including time shifts for compensating
sensorimotor delays) provide adaptation mechanisms to infer
dynamics correction models toward accurate object manipula-
tion. Concretely, we have evaluated how a temporal-correlation
kernel driving an error-related LTD and a compensatory LTP
component (complementing each other) can achieve effective
adaptation of the corrective cerebellar output. We have shown
how the temporal-correlation kernel can work even in the pres-
ence of sensorimotor delays. However, considering the results
obtained for several sensorimotor delays, we can state that the
desired trajectory must be coded using a univocal population
coding in each time step, that is, the codification of the desired
position/velocity during the trajectory must be different for each
point of the trajectory. And thus, as our cerebellar structure
can adaptively generate any suitable output for each trajectory-
point codification, the delay of the sensorimotor pathways is
not remarkably relevant, even if this delay does not match the
intrinsic compensatory delay of the learning integration kernel.

In this simple cerebellarlike structure, we have shown how
the representation of the cerebellar weight matrix correspond-
ing to the PF-PC connections can be interpreted in terms of
the generated corrective torque (which, in turn, is a direct
consequence of this representation). This allows us to study
the performance of this corrective model storage and how the
changes of the arm dynamics (manipulating different object)
are inferred on different synaptic weight patterns.

We have also shown how LTD and LTP need to be balanced
with each other to achieve high performance adaptation capabil-
ities. We have studied the behavior of these two complementary
adaptation mechanisms. We have evaluated how the learning
behaves when they are balanced and also when they are in
value ranges in which one of them dominates saturating the
adaptation capability of the learning rule. We have evaluated
how well-balanced LTD and LTP components lead to an effec-
tive reduction of error in manipulation tasks with objects which
significantly affect the dynamics of the base arm plant.

We have used a simplified version of the cerebellum to focus
on the way that the cerebellar corrective models are stored
and structured in neural population weights. This is of interest
to inform neurophysiologic research teams to drive attention
to potential footprints of inferred models within the PF-PC
connections.

As future work, we will study how to dynamically optimize
the LTD-LTP integration kernel instead of a single, stable, and
balanced LTD-LTP kernel, we will evaluate the capability of
improving the adaptation mechanism, shifting this balance to
acquire the corrective models faster and then, decrease the
plasticity once an acceptable performance is reached. This
approach can optimize the learning capability of the system.

We will also develop further real-time interfaces between
analog signals and spiking neurons (between the robot and the
EDLUT simulator) to perform simulations with real robots and
new cerebellar architectures working in a manipulation task
scenario in which granular layer, Golgi cells, and stellate cells
will be included. This will be addressed in a starting EU project
(REALNET).

The neuron models, cerebellar models, and adaptation mech-
anisms will be available at the EDLUT simulator site to facili-
tate the reproduction of the presented work.
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Fig. 11.

Learning the corrective models for the eight-like target trajectory when manipulating objects with different masses (2, 1.5, 1, and 0.5 kg).

(a) three-joint value representation for the performed trajectory. The three joints are shown. The followed trajectory is shown each 25 trials during a 400-trial

complete learning process. (b) 2-D representation of the performed trajectory

(Desired trajectory in red; in blue. initial trial; in black, trial number 200; and in

cyan, final trial). Improvement in %: 0.5 kg 200-trial 40.4% 400-trial 49%; 1 kg 200-trial 64.6% 400-trial 64.5%; 1.5 kg 200-trial 72.5% 400-trial 74.4%;
2 kg 200-trial 78.6% 400-trial 79.3%. Stability improvement in % (average std over 0-30 trials/17-200 trials/370-400 trials). 0.5 kg 170-200-trials 82%
compared to initial 0-30-trials, 370—400-trials 60.1% comparing to initial 0-30-trials. 1 kg 170-200-trials 49.6% compared to initial 0-30 trials, 370-400-trials
42.1% compared initial 0-30-trials. 1.5 kg 170-200 trials 46.1% compared to initial 0-30 trials, 370—-400-trials 26.4% compared to initial 0-30-trials. 2 kg 170—
200 trials 26.4% compared to initial 0-30-trials, 370—400 trials 25.1% compared to initial 0-30 trials.
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Fig. 12. Learning performance when manipulating different objects (0.5,
1, 1.5, and 2 kg) during 400-trial learning processes. (a) MAE evolution.
Learning occurs on a continuous basis providing incremental adaptability
throughout the simulation time. (b) Accuracy gain.
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