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A
nthropomimetic robots sense, behave, interact, 
and feel like humans. By this definition, they 
require human-like physical hardware and 
actuation but also brain-like control and sensing. 
The most self-evident realization to meet those 

requirements would be a human-like musculoskeletal robot 
with a brain-like neural controller. While both 
musculoskeletal robotic hardware and neural control 
software have existed for decades, a scalable approach that 
could be used to build and control an anthropomimetic 
human-scale robot has not yet been demonstrated. 
Combining Myorobotics, a framework for musculoskeletal 
robot development, with SpiNNaker, a neuromorphic 
computing platform, we present the proof of principle of a 
system that can scale to dozens of neurally controlled, 
physically compliant joints. At its core, it implements a 

closed-loop cerebellar model that provides real-time,   
low-level, neural control at minimal power consumption 
and maximal extensibility. Higher-order (e.g., cortical) 
neural networks and neuromorphic sensors like silicon 
retinae or cochleae can be incorporated.

Combining Hardware and Computer Architecture
A major challenge and vision for articulated robots is to 
behave and interact with humans in a safe and natural manner. 
Robots that mimic the mechanical properties of the human 
build strive toward both attributes simultaneously [1], [2], as, 
by design, they possess built-in compliance and relatively natu-
ral—i.e., human-like—mass distribution and dynamics. Mus-
culoskeletal robots in particular offer lightweight, low-inertia 
end effectors because the main actuators, the skeletal 
muscles, can be kept at rest. Figure 1 shows a design that 
coarsely mirrors a human arm. Most of the muscle mass is  
rigidly attached to the torso. Muscles connect to the distal 
bone only via tendons, which have a negligible weight. In this 
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way, two passive safety aspects, which minimize the head inju-
ry criterion [1], are intrinsic to the anthropomimetic musculo-
skeletal architecture: compliance and minimal moving mass.

Similarly bioinspired approaches on the controller side are 
simulated or emulated biological neural networks, because 
the human brain and central nervous system are the most rel-
evant reference for natural control of musculoskeletal limbs. 
Neural control as done by animals or humans is the most ele-
gant, versatile, and energy-efficient way to use musculoskele-
tal systems. Just as the human-like mechanical build has 
inherent passive safety advantages, brain-like control has 
desirable active safety features. The human nervous system 
implements active compliance on multiple levels. Arguably 
more importantly, though, humans are perfectly accustomed 
to human-like behavior. Despite the fact that your colleagues 
could, if so inclined, injure you or others, working with 
humans is generally considered safe and does not require any 
special training. Consequently, there is every hope that their 
natural, and, in this sense, predictable behavior could gain 
anthropomimetic robots human-like safety attributes. The 
most demanding requirements and challenges on both the 
robotic hardware and the controller side are scalability and 
usability. Anthropomimetic robots have been built by numer-
ous research groups, such as the Jouhou System Kougaku 
Laboratory of the University of Tokyo and partners within the 
European Union-funded project Embodied Cognition in a 
Compliantly Engineered Robot (Eccerobot) [3], [4], among 
others. However, those systems were custom designed, mostly 
using complex hardware and software that inhibits reproduc-
tion across labs and involves high production costs [5]. The 
situation is similar with computing platforms. Robotic appli-
cations require flexible interfaces and strict real-time execu-
tion of large neural simulations [6]. Different neuromorphic 
architectures and neuroaccelerators have been developed, yet 
most of them, like those based on graphics processing units 
[7], [8], lack in terms of scalability. Special-purpose systems 
like those based on field-programmable gate arrays (FPGAs) 
[9], [10] or custom silicon [11], [12] are usually too inflexible 
for a nonexpert to implement and investigate custom learning 
rules, synapse types, or cell models.

To this end, the prevailing architecture for neural simula-
tions and neural controllers is still the desktop computer, 
which we define in the context of this work as a Von Neu-
mann architecture with a modest number of computing cores 
that share a common large random access memory (RAM). 
Depending on the underlying computations, such architec-
tures are typically not optimal for simulating large neuronal 
networks (the human cerebellum alone comprises more than 
1011 neurons [13]), which are inherently parallel [12].

In this article, we present the unique combination of mus-
culoskeletal robotics hardware (Myorobotics) and neural con-
trol substrate implemented on a scalable spiking neural 
network (SNN) infrastructure (SpiNNaker). We demonstrate 
how these technologies can address the aforementioned chal-
lenges and facilitate the development of human-scale anthro-
pomimetic systems that are controlled by brain-like SNNs. It 

is our conviction that SpiNNaker and Myorobotics pave the 
way for large-scale, complex neurorobots.

SpiNNaker
SpiNNaker [14] is a computer system designed for real-
time simulations of SNNs by the Manchester Advanced 
Processor Technologies Research Group. A typical SpiN-
Naker system comprises thousands of ARM968 processing 
cores, which can run arbitrary code. They are distributed 
on a quasi-seamlessly extensible mesh network that is 
spanned by special multicast routers at its nodes. SpiNNa-
ker’s multicast routers are optimized for small (40 or 72 b 
wide) data packets. Those SpiNNaker packets typically 
resemble action potentials or neural spikes in an SNN sim-
ulation. They typically convey only the source address of 
their originating neuron, from which the routers deduce 

Figure 1. The complex Myorobotics arm mimicking the complexity 
of a human arm without spatula. Nine muscles cooperate to 
control the ball-in-socket joint. One of these muscles, relating 
to the biceps, is biarticular, as it is attached so that it affects the 
motion of two joints, effectively coupling the shoulder and  
elbow joint.

Nine Muscles Assembly

Ball-in-Socket Joint

Two Elbow Muscles

MYO-Ganglion

Asymmetric Hinge

Lightweight
Carbon-Fiber Bone



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  

the routing direction based on a user-programmed routing 
table. Every SpiNNaker chip houses one router, 18 SpiNNa-
ker cores (each with 96 kB of local memory), and 128 MB 
of shared synchronous dynamic RAM. 

The Manchester group provides an open software 
framework that promotes an event-driven programming 
model through the Spin1 application programming inter-
face [14]. Implementations of PyNN, a common interface 
for neuronal network simulators [15], and Nengo, a graphi-
cal and scripting-based software package for simulating 
large-scale neural systems [16], are provided as a high-level, 
user-friendly way to specify neural networks. These net-
works are then automatically mapped, uploaded, and exe-
cuted on SpiNNaker. The entire software framework is 
open source, so it can be extended and modified by its 
users (see https://github.com/SpiNNakerManchester).

In terms of SNN simulation performance, SpiNNaker 
is superior to desktop computers by orders of magnitude. 
As a rule of thumb, a single SpiNNaker chip ( )P 1W.  
can handle a network of 10,000 leaky integrate-and-fire 
neurons in real time. A desktop computer needs a high-
performance processor ( )P 50 W.  with fast memory to 
perform the same task. A single SpiNN-5 board contains 
48 SpiNNaker chips drawing about the same amount of 
electrical power ( )P 50 W.  but providing about 50 times 
the computational power. Finally, the system scales from 
18 (single chip) to over 1 million cores (57,600 chips), so 
the system size can be adapted to a wide range of neural 
network sizes by interconnecting an appropriate number 
of SpiNNaker boards. Whereas the maximum system size 

might not be relevant to the robotics community, the scal-
ability, power efficiency, flexibility, and ease of use cer-
tainly are.  SpiNNaker is designed for real-time SNN 
simulations. Given proper interfaces, it offers the prime 
opportunity to let large SNNs interact with and adapt to 
the real world.

Myorobotics
Myorobotics is a tool kit for modular musculoskeletal robots 
that encompasses the full life cycle of robot design. Robots can 
be assembled, optimized, and simulated from primitives, then 
built and controlled from the same software. The robots are 
assembled from a set of primitives: bones, muscles, and joints, 
which are shown in Figure 1. The most interesting of those 
building blocks, the muscle, is detailed in Figure 2. Its body  
is made of three-dimensional (3-D) printed polyamide (PA). 
It is actuated by a 100 W dc motor (Maxon Motor EC series) 
that coils up a cable—the tendon. Three pulleys route the ten-
don in a triangular fashion. One of the pulleys is attached to a 
spring-loaded guiding rod. This mechanism endows the 
Myorobotics actuator with a (nonlinear) series elasticity.

The Myorobotics tool kit allows for the creation of a multi-
tude of robot morphologies and enables researchers to inves-
tigate properties and dynamics of musculoskeletal robots. Its 
dedicated electronics provide tendon force, velocity, position, 
and torque control at 500 Hz directly from a standard desktop 
computer with all sensory data available on the bus. At this 
update rate, the bandwidth of a single FlexRay interface, 
which is employed for high-level control, allows for up to 24 
motors that can be driven concurrently.

The framework can be extended easily with new primi-
tives thanks to a standardized structure connector between 
the parts as well as a software plug-in that imports the con-
struction directly from the computer-aided design software 
SolidWorks. Consequentially, the system allows for primitives 
from a broad range of categories and covers many interesting 
use cases, such as anthropomimetic arms with complex 
shoulder joints (Figure 1), quadrupeds, and hopping robots. 
As the whole system was built with the nonrobotic expert 
user in mind, it is easy to use, and it allows for fast modifica-
tion of the robot topology. The entire system, including all 
three-dimensional (3-D) models, schematics, and all source 
code, is open source (see http://www.myorobotics.eu/).

What differentiates Myorobotics from other series elastic 
actuators and variable stiffness actuators is that Myorobotics 
actuators generate pulling forces between two attachment 
points rather than torques between two rigid links. This yields 
a fundamentally different control problem. While it can be 
reduced to classical joint angle-based control by describing a 
muscle Jacobian that maps the lengths of all tendons that 
apply forces between two links to a joint angle, this mapping 
is, in many cases, not unique; choosing a specific mapping 
means reducing the space of possible trajectories. However, 
there is ongoing research to design control strategies that 
directly map task space trajectories to desired muscle forces 
without the intermediate step of calculating target joint 

Figure 2. The Myorobotics muscle with its components. The 
tendon (red cable) is routed in a triangular fashion in the muscle 
to create a nonlinear net spring force. The tendon force is sensed 
by measuring the spring displacement through a magnetic strip 
fixed to the guiding rod of the spring that slides by a hall-effect 
encoder. This allows calculation of the respective force from a 
known spring constant and tendon routing geometry.
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angles. This is especially interesting in the context of this arti-
cle, as all biological muscle-based systems solve this control 
problem rather than a target joint angle/torque problem. 
Myorobotics is thus a much closer model of the behavior of 
biological musculoskeletal systems than series elastic actua-
tors such as the mechanically adjustable compliance and con-
trollable equilibrium position actuator.

Neural Circuitry
We focus on implementing a cerebellar model to control the 
dynamics of the robotic system. Even though the major role 
of the cerebellum seems to be supervised learning of motor 
patterns [17], it is clear that vertebrate limb control cannot be 
reduced to cerebellar functioning [18]. An individual with 
cerebellar lesions may be able to move the arm to successfully 
reach a target and to successfully adjust the hand to the size of 
an object. However, the action cannot be made swiftly and 
accurately, and the ability to coordinate the timing of the two 
subactions is lacking [19]. Vertebrate movement generation 
involves the basal ganglia, filtering out unwanted movements 
[17], as well as the motor and parietal cortices. Movement 
realization, of course, also involves the spinal cord, which 
controls antagonism and seems to take care of nonlinearities 
in muscular functionality. Our model, however, focuses on a 
model of the cerebellar neurocircuitry for the following rea-
sons. First, the fast learning of cerebellar circuitry is important 
for fast adaptation to environmental influences [20]. Second, 
some functionality of the spinal cord can be simulated with 
simple proportional-integral differential (PID) controllers 
[21], especially for the comparatively simple actuator behavior 
that our system exhibits.

Setup

Robot
The robot employed in our proof of concept is the most basic 
setup that can be built with Myorobotics, consisting of a sin-
gle symmetric hinge joint with two bones and two muscles 
driving it (Figure 3). The system uses only the motor driver 
boards from the Myorobotics electronics, which we interface 
using a controller area network (CAN) bus. Larger Myorobot-
ics systems connect the driver boards to intermediate control-
ler boards (MYO-Ganglia) that offer a higher-level, 
higher-bandwidth control interface via FlexRay.

Figure 3(a) highlights the individual parts of our joint 
assembly. The two artificial muscles (m1, m2) are connected 
to the lower bone (bl). Tendons connect them to the opposite 
side of the hinge joint (j). Each muscle consists of a brushless 
dc motor (d) that coils up the tendon (t); we will call this the 
actuator. The tendon is routed via a spring (s) and exits at a 
fixed outlet (o). The mechanically linear spring is combined 
with a triangular routing of the tendon (Figure 2), making the 
net spring behavior nonlinear. Because the actuators can only 
pull, an antagonist actuator is required. By pretensioning both 
actuators, both springs get contracted, thereby changing the 
mechanical stiffness of the system.

Interfaces
To connect SpiNNaker to robotic sensors and actuators, we 
have developed a hardware interface that acts like another 
node on SpiNNaker’s mesh network [22]. It translates sensor 
data into SpiNNaker packets and SpiNNaker packets into, for 
example, motor commands. The microcontroller-based 
design allows us to connect SpiNNaker to many different bus 
systems, including universal asynchronous receiver/transmit-
ters (UARTs) and CANs. We use the former for communica-
tion with an external desktop computer, the latter for 
Myorobotics actuators and sensors (Figure 4). Although the 
interface board allows for real-time injection of neural spike 
trains into SpiNNaker, our current implementation saves 
bandwidth by handling the de- and encoding between robot 
data and neural spikes directly on SpiNNaker. The inset in 
Figure 4 illustrates this setup: sensory updates arrive as a 
SpiNNaker packet’s payload at the respective ARM cores that 
are continuously emitting spike trains encoding the current 
sensory state. Likewise, dedicated motor cores continuously 
translate incoming spike trains to motor commands.

The typical translations performed on the input  SpiNNaker 
cores are either rate or population coding, the latter with 
Gaussian receptive fields and linearly distributed preferred val-
ues. Because SpiNNaker cores can be freely programmed, 
more flexible translation schemes, for example, involving self-
organizing maps, can be implemented. Our output cores 
translate the rate of incoming spikes from within the SpiNNa-
ker mesh to a motor output signal via a linear transformation 
and an exponential falloff in time. The time window and 
update cycle is typically 20 ms. Again, more complex transla-
tion schemes can be implemented. Those could involve pro-
prioceptive feedback from the Myorobotics actuators and, in 
this way, emulate the macroscopic or microscopic behavior of 
real skeletal muscles. From a PyNN network point of view, 
input and output are handled and set up like normal neural 
populations. The low-level implementation as C code is 
wrapped by PyNN objects and thus hidden from the PyNN 

Figure 3. The single-joint Myorobotics proof-of-principle setup 
shown as (a) a schematic and (b) a photograph with a SpiNN-5 
48-chip SpiNNaker neuromorphic computer. m1 and m2: two 
artificial muscles; b1: the lower bone;  j: the hinge joint;  d: the 
brushless dc motor; t: the tendon; s: the spring; and o: the fixed outlet.

t

o

m1 m2

j

s

d bl

(a) (b)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  

programmer. All settings like time constants or scale factors 
can be adjusted in a user-friendly, object-oriented fashion.

Network Model
As a first demonstration of our system, we chose a cerebellar 
model that has previously been used to operate robots [20]. 
Our network model is akin to a Marr–Albus style cerebellum 
[23], [24]. Its specific setup including all cell parameters is 
derived from [20]. Although several network configurations 
were evaluated in [20], we have considered the network that 
receives an implicit estimation of the robot actual state actz  
and the set point setz . Figure 5 illustrates the network struc-
ture. The network is composed of leaky integrate-and-fire 
neurons with biologically realistic cell parameters and plausi-
ble divergence/convergence ratios be  tween the different lay-
ers. As previously done in [20], we are omitting inhibitory 
interneurons and the olivo-cerebellar loop to arrive at a most 
basic and deterministic model. However, the network still 
keeps the main roles that have been proposed for each layer in 
the Marr–Albus model [23], [24], i.e., input sparse recoding of 
the mossy fiber (MoF) inputs in the granular layer and super-
vised learning in the Purkinje cells (PuCs).

Each of the two motors is controlled by the spike rate of 
four deep cerebellar nuclei (DCN) cells, which receive excit-
atory input from 32 MoFs and inhibitory input from eight 
PuCs. MoF spiking activity (representing sensory input, actual 
state and control data, and target angle) produces sequences of 
active granule cells (GrCs). Because each of the 256 GrCs 

receives input from a unique set of 
MoF cells, a sparse coding of the input 
is made available in the parallel fibers 
(PFs), the long axons of the GrCs.

The inhibitory corrective term that 
the DCN receives from PuCs is 
shaped through supervised learning 
between PFs and PuCs. The teaching 
signal encoding the actual error 
reaches the PuCs through the inferior 
olive (InO), producing complex 
spikes. This particular type of long-
lasting spikes has been demonstrated 
to induce long-term depression in the 
PF-PuC synapses when correlated 
with simultaneous PF spikes [25]. 
This learning mechanism has been 
implemented by using a kernel func-
tion ( )w t tGrC InOD -  relating mutual 
InO–GrC spike timing with synaptic 
weight changes Δw (see [20] for 
details). It basically punishes synapses 
that likely lead to erroneous behavior: 
if a GrC spike on a GrC-PuC synapse 
leads to some action and is followed 
by an InO spike after a characteristic 
response time, say 100 ms, then the 
respective synaptic weight, which was 

likely responsible for that error, is depressed [26]. To com-
pensate the long-term depression term, long-term potentia-
tion is induced every time a  presynaptic spike occurs in the 
PFs. The effective spike timing-dependent plasticity func-
tion ( )w t tInO GrCD -  is plotted in Figure 5. Interestingly, this 
learning rule also deals with the long delay that has been 
observed in the action-perception loop of the nervous sys-
tem that has been estimated at around 100 ms [26].

This rather unusual learning rule would be impossible to 
implement on many neuroaccelerator platforms. SpiNNa-
ker, on the other hand, is freely programmable. Just like the 
previously discussed input and output populations, we 
implemented this learning rule as low-level C code on SpiN-
Naker and wrapped it into a PyNN object for the high-level 
network description. We chose a lookup-table (LUT)-based 
approach, in which the LUTs for the temporal kernel are 
compiled by the Python front end. The respective SpiNNa-
ker cores buffer up to 160 spikes per simulated synapse and 
evaluate their mutual timing and the corresponding synap-
tic weight change periodically.

The reference network implementation, which we port-
ed to SpiNNaker, is running on an event-driven simulator 
based on LUTs (EDLUT, see http://edlut. googlecode.com) 
[27], [7], a high-performance event-driven neural network 
simulator software. We developed a framework that trans-
lates a high-level text-based network description for either 
EDLUT or PyNN, runs the simulation on the PC or SpiN-
Naker, respectively, and compares the resulting network 

Figure 4. The logical and electrical layout of our system. The frame and arrow colors 
indicate bus types. The SpiNN-IO board provides a real-time interface between the robot, 
the desktop computer, and SpiNNaker. Communicating with a SpiNNaker chip’s router 
via SpiNN-Link provides the input SpiNNaker cores with sensory data x,y. It receives 
motor commands z from output cores that it translates and forwards to the robot. 
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output. Through the use of a pro-
grammable power supply (Manson 
HCS-3202) we can monitor SpiNNa-
ker’s run-time power consumption 
and compare it to that of EDLUT 
running on our desktop computer. 
This way our SpiNNaker implemen-
tation could be rigorously checked 
and tested against the reference 
implementation on EDLUT.

Our SpiNNaker implementation 
matches the EDLUT reference well. 
Minor deviations mainly stem from the 
fact that the SpiNNaker implementa-
tion is tick based and uses fixed-point 
representations, while EDLUT is purely 
event driven and uses double precision 
floating point. SpiNNaker cores lack a 
floating point unit, so floating point 
computations on SpiNNaker would be 
inefficient. The Manchester team made 
this design decision to save on power 
consumption and die area per core. A 
comparison to the relatively efficient 
desktop-based software simulator 
EDLUT highlights SpiNNaker’s power efficiency. Depend-
ing on the network layout and its input, SpiNNaker’s energy 
consumption is just one hundredth to one tenth that of 
EDLUT running on a typical desktop computer—a consid-
erable asset especially relevant for autonomous robots.

Graphical User Interface
While our system can run headless, in a closed-loop fashion, 
we have built a graphical user interface (GUI) for live moni-
toring and interaction with the neural simulation on SpiNNa-
ker. The software runs on an external computing station, 
receives data from the CAN bus, and uses UART to inject 
data into SpiNNaker via the SpiNN-IO board (Figure 4). 
Through the GUI, the user can control the target joint angle 
of the robot and adjust the PID parameters determining the 
teaching (error) signal calculation. The teaching signal as well 
the target angle are sent to SpiNNaker at an update frequency 
of 20 Hz. As for debugging purposes and performance evalu-
ation, the user can monitor the current CAN data, the devia-
tion between current and target joint angle, and the current 
error signal as well as the live spike train of selected neuron 
populations.

Evaluation
Figure 6 shows the performance of our proof-of-principle 
cerebellar model running in real time on SpiNNaker while 
controlling the antagonistic Myorobotics joint. It illustrates 
neural spikes as colored raster plots and its control and senso-
ry input values over time as black solid lines, where applica-
ble. There are separate PuC (dark blue spikes), InO (red 
spikes), and DCN (purple spikes) populations, for the left 

(index L) and right (index R) actuator. The error signals 
,L Ree  are computed as a PID error signal ( )E set actz z-  by 

the GUI. The corresponding spike trains are emitted by the 
InO populations. They shape the weights between the GrCs 
(not shown) and the respective PuCs. The control input is the 
joint angle set point ( )tsetz  as given by the GUI, which corre-
sponds closely to the MoF spikes of the MoFset population. 
The other control input is the actual joint angle ( )tactz  as 
measured by a magnetic angle sensor within the Myorobotics 
joint. MoFact is the corresponding neural population. The 
SpiNN-IO board reads actz  directly from the CAN bus, 
receives , ,L Rsetz e e  via UART (from a universal serial bus-
UART interface), and streams all values into SpiNNaker via 
SpiNN-Link, where they are translated into spike trains, as 
illustrated in Figure 4.

Control Performance
In the present setup the teaching signal conveys the mis-
match between the actual and the target joint angle. Conse-
quently, to minimize that error and maximize the agreement 
between actz  and setz , the network learns to perform antago-
nistic control. In our scenario, the network learns to follow 
the given sinusoidal trajectory ( )tsetz  within a few revolu-
tions. The learning is exclusively based on the intrinsic plas-
ticity mechanism at GrC-PuC synapses, as previously 
explained in the “Network Model” section. Figure 6(a) 
shows the performance of the naive network with randomly 
initialized weights at the GrC-PuC synapses. In this state, the 
cerebellar model does not even know right from left. There-
fore, the joint angle actz  (MoFact) does not track the given 
trajectory ( )tsetz  (MoFset) at all. As an example, at t 15 s= , 

Figure 5. A schematic drawing of our cerebellar model along with its input (actual angle 
actz , set point setz , control error e) and output (motor pulsewidth ~). Single neurons or 

spike sources are represented by dots, populations are marked by rectangular frames, 
and the thin lines connecting neurons represent synapses. The graph represents the 
learning rule governing weight changes ∆w at GrC-PuC synapses in response to the 
relative timing of GrC and InO spikes as they arrive at PuC dendrites.
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setz  is at the rightmost position, actz  still on the far left side. 
In this situation, the right muscle should clearly pull more. 
The teaching signal reacts accordingly: Re  is at its maximum, 
resulting in a high InOR firing rate. The corresponding GrC-
PuCR weights decrease accordingly. In subsequent similar 
situations this results in less DCNR inhibition by the PuCR 
population and more motor output ωR. So after five minutes 
of run time (and learning), the system can follow the trajec-
tory much better [Figure 6(b)]: actz  tracks setz  much more 
closely, and the cerebellar model has learned to do antagonis-
tic control. The cerebellum can also learn to follow different 
waveforms or manually controlled trajectories (see https://
youtu.be/y6MwOtW3_kQ for a video demonstration).

Note that, in the given example, the network output is the 
sole control input to the robot arm. It controls the motors 
directly via pulsewidth modulation. While this nicely dem-
onstrates the learning capabilities of the network, it does not 
mirror the biological antetype. In a more biologically realistic 
scenario, the cerebellum would output a corrective term that 
adds to a (cortical) forward-kinematic control signal.

Scalability and Constraints
Our present configuration runs on a single SpiNNaker chip. It 
utilizes only 16 SpiNNaker cores, 2% of a single SpiNN-5 
board. Consequently, there is ample room for adding more 
joints and actuators as well as higher-level (e.g., cortical) neu-
ral networks. With SpiNNaker being a scalable system, com-
puting resources are clearly no longer the bottleneck.

Our SpiNN-IO board connects the robot and the desktop 
computer with SpiNNaker. Its microcontroller limits the 
effective, combined update rate of input and output popula-
tions to about 500 kHz [22]. In effect, our current system 
could handle 500 input/output (I/O) populations at an 

update rate of 1 kHz. As each I/O population occupies a sin-
gle SpiNNaker core, those neural populations would fill 
about 60% of a single SpiNN-5 board. A limit of 500 sensory 
streams at 1 kHz update rate translates to roughly 100 actua-
tors, or dozens of joints that could be controlled with a single 
or few SpiNN-5 boards—within an order of magnitude to a 
human-scale robot. This limit could be alleviated by using 1) 
more than one SpiNN-IO (on separate SpiNN-5 boards), or 
2) a modified SpiNN-IO design that uses SpiNNaker’s  
interboard connectors. FPGAs on the SpiNN-5 board multi-
plex eight SpiNN-Link ports on each connector.

The remaining bottleneck is the communication between 
SpiNN-IO and the robot. In our current setting, we can use 
up to four separate CAN buses, which can manage up to four 
joints (eight Myorobotics actuators) at an update rate of 500 
Hz. By using the full Myorobotics electronics, namely up to 
six MYO-Ganglia connected to a dedicated FlexRay control-
ler, up to 12 joints (24 actuators) can be used at the same 
update rate. Again, with multiple SpiNN-IO boards, each 
with a dedicated FlexRay controller, we can alleviate this limit.

Discussion
By demonstrating the control of a musculoskeletal joint with 
a simulated cerebellum running in real time, we successfully 
combined robotic hardware (Myorobotics) and simulation 
platform (SpiNNaker). Both Myorobotics and SpiNNaker 
offer scalability and usability: They can be extended in a 
straightforward manner, with no major roadblocks in sight 
toward systems approaching human-level complexity. Of 
course, many components still have to be added to arrive at a 
system that can interact with its environment in an intelligent 
way. Fortunately, a number of suitable technologies are readily 
available today.

Figure 6. The performance of our cerebellar real-time simulation on SpiNNaker. (a) Naive cerebellum and (b) five minutes later: trained 
cerebellum. Colored semiopaque squares symbolize spike events (spike density ? color saturation), left ordinate indicates the neuron ID. 
The black solid curves indicate the respective angle z (MoF input), motor output ~ (DCN output), or error signal e (InO input). Indices: L 
and R, left and right; act, actual sensory values; set, set point.
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Sensors
While any sensor could be added to our framework, event-
based systems are the most natural fit. Their sensory address-
event-representation (AER) maps directly onto SpiNNaker 
packets, i.e., neural spikes in SNN simulations. The events 
emitted by an AER auditory sensor, or silicon cochlea [28], 
for instance, represent a sound’s momentary frequency-
resolved power spectrum. Their address encodes a specific 
frequency. The repetition rate of events with the same address 
encodes the respective spectral weight. Events emitted by an 
AER vision sensor, or silicon retina, typically represent a sud-
den, pixel-local change in brightness. Here, the address 
encodes the pixel coordinate. Silicon retinae [22], [29] and 
cochleae have previously been integrated with SpiNNaker. 
They are perfectly compatible with our interface.

Intelligence
SpiNNaker can serve as a computing back end for PyNN [15] 
or Nengo [16]. Neural networks specified in those languages 
can often be run directly on SpiNNaker or require only minor 
modifications to be made, when porting a network from one 
compute back end to another. Missing software features, in our 
case a learning rule and I/O handlers, can be added to SpiN-

Naker’s open source framework. Many available models can be 
ported and integrated into the system with minor effort.

Systems
Neural models available for either PyNN or Nengo include 
diverse brain structures. In fact, the world’s largest functional 
brain model, Spaun [30], is defined in Nengo. An embodied 
version of the model that can interact with the physical world 
as well as with humans would be an interesting test bed for 
human-robot interaction and cognitive science [31]. A 
Spaun-like brain model combined with advanced musculo-
skeletal robots like Roboy [3] (Figure 7) would herald a whole 
new era of robotic research. Our proof-of-concept system 
combining SpiNNaker and Myorobotics paves the way for 
exactly these kinds of endeavors, which we hope to stimulate 
with this article.

A typical human cerebellum comprises about 100 bil-
lion neurons [13], about as many as the rest of the brain. 
A realistic simulation of such a complex large-scale sys-
tem will rely not just on massive computing resources; it 
also requires a detailed and realistic environment to inter-
act with. Therefore, real-time capable neurosimulators in 
conjunction with robots will eventually become an essen-
tial tool of brain research. Practical and scalable systems 
like the one presented enable a mutual interaction 
between neuroscience and robotics: robots can help to 
advance neuroscience just as neuroscience helps us to cre-
ate more natural robots.

Acknowledgments
We wish to thank N. Luque for helpful discussions regarding 
cerebellar motor control; S. Temple and the SpiNNaker Man-
chester team for their invaluable hardware, software, and sup-
port; and the Myorobotics team for providing us with robot 
parts. Christoph Richter and Jörg Conradt acknowledge 
funding and support by the German Federal Ministry for 
Education and Research through the Bernstein Center for 
Computational Neuroscience Munich (01GQ1004A). Sören 
Jentzsch, Rafael Hostettler, Alois Knoll, Florian Röhrbein, and 
Patrick van der Smagt acknowledge funding from the Euro-
pean Union Seventh Framework Program (FP7/2007-2013) 
under grant agreement 604102 (Human Brain Project) 
and Rafael Hostettler under grant agreement 288219 
(Myorobotics). Patrick van der Smagt also acknowledges sup-
port from DLR. Jesús A. Garrido and Eduardo Ros would like 
to acknowledge Spanish National Project NEUROPACT 
(TIN2013-47069-P). Jesús A. Garrido also acknowledges 
funding from the University of Granada and the European 
Union H2020 Framework Program (H2020-MSCA-IF-2014) 
under grant agreement 653019 (CEREBSENSING).

References
[1] A. Bicchi and G. Tonietti, “Fast and ‘soft-arm’ tactics [robot arm 
design],” IEEE Robot. Automat. Mag., vol. 11, no. 2, pp. 22–33, June 2004.
[2] O. Holland and R. Knight, “The anthropomimetic principle,” in Proc. 
AISB06 Symp. Biologically Inspired Robotics, Bristol, UK, 2006, pp. 115–123.

Figure 7. Roboy, a human-like, musculoskeletal robot with 28 
degrees of freedom and 48 motors, to be controlled by brain-
inspired systems. (Photograph courtesy of Adrian Baer.)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  

[3] R. Pfeifer, H. G. Marques, and F. Iida, “Soft robotics: The next gener-
ation of intelligent machines,” in Proc. 23rd Int. Joint Conf. Artificial Intelli-
gence (IJCAI-13), Beijing, China, 2013, pp. 5–11.
[4] S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. 
Devereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H. G. 
Marques, P. Milosavljevic, B. Mitra, B. Svetozarevic, V. Potkonjak, R. 
Pfeifer, A. Knoll, and O. Holland, “Toward anthropomimetic robotics: 
Development, simulation, and control of a musculoskeletal torso,” Artifi-
cial Life, vol. 19, no. 1, pp. 171–193, Jan. 2013. 
[5] H. G. Marques, M. Christophe, A. Lenz, K. Dalamagkidis, U. 
Culha, M. Siee, P. Bremner, and the Myorobotics Project Team, 
“Myorobotics: A modular toolkit for legged locomotion research 
using musculoskeletal designs,” in Proc. 6th Int. Symp. Adaptive 
Motion of Animals and Machines (AMAM’13), Darmstadt, Germany, 
2013, pp. 10–15.
[6] J. Conradt, G. Tevatia, S. Vijayakumar, and S. Schaal, “On-line learn-
ing for humanoid robot systems,” in Proc. Int. Conf. Machine Learning 
(ICML2000), Stanford, CA, 2000, pp. 191–198.
[7] F. Naveros, N. Luque, J. Garrido, R. Carrillo, M. Anguita, and E. Ros, 
“A spiking neural simulator integrating event-driven and time-driven 
computation schemes using parallel CPU-GPU co-processing: A case 
study,” IEEE Trans Neural Netw. Learn. Syst., vol. 26, no. 7, pp. 1567–1574, 
July 2015.
[8] T. Yamazaki and J. Igarashi, “Realtime cerebellum: A large-scale 
spiking network model of the cerebellum that runs in real time using 
a graphics processing unit,” Neural Netw., vol. 47, pp. 103–111, Nov. 
2013.
[9] E. Ros, E. Ortigosa, R. Carrillo, and M. Arnold, “Real-time comput-
ing platform for spiking neurons (RT-spike),” IEEE Trans. Neural Net-
works, vol. 17, no. 4, pp. 1050–1063, July 2006. 
[10] R. Agis, E. Ros, J. Diaz, R. Carrillo, and E. M. Ortigosa, “Hardware 
event-driven simulation engine for spiking neural networks,” Int. J. Elec-
tronics, vol. 94, no. 5, pp. 469–480, Apr. 2007.
[11] J. Schemmel, D. Bruderle, A. Grubl, M. Hock, K. Meier, and S. Mill-
ner, “A wafer-scale neuromorphic hardware system for large-scale neural 
modeling,” in Proc. 2010 IEEE International Symp. Circuits and Systems 
(ISCAS), Paris, France, pp. 1947–1950.
[12] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, 
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. 
Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. 
Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrat-
ed circuit with a scalable communication network and interface,” Sci., 
vol. 345, no. 6197, pp. 668–673, Aug. 2014.
[13] B. B. Andersen, L. Korbo, and B. Pakkenberg, “A quantitative study 
of the human cerebellum with unbiased stereological techniques,” J. 
Comp. Neurol., vol. 326, no. 4, pp. 549–560, 1992.
[14] S. Furber, F. Galluppi, S. Temple, and L. Plana, “The SpiNNaker 
project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.
[15] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. 
Pecevski, L. Perrinet, and P. Yger. (2009, Jan.). PyNN: A common inter-
face for neuronal network simulators. Front. Neuroinformatics [Online]. 2, 
p. 11. Available: http://www.frontiersin.org/neuroinformatics/10.3389/
neuro.11.011.2008/abstract
[16] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. 
Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith. (2014, Jan.). 
Nengo: A Python tool for building large-scale functional brain models. 

Front. Neuroinformatics [Online]. 7, p. 48. Available: http://www.
frontiersin. org/neuroinformatics/10.3389/fninf.2013.00048/abstract
[17] K. Doya, “Complementary roles of basal ganglia and cerebellum in 
learning and motor control,” Curr. Opin. Neurobiol., vol. 10, no. 6, pp. 732–
739, 2000.
[18] P. van der Smagt, G. Metta, and M. A. Arbib, “Neurorobotics: From 
sensing to action,” in Springer Handbook of Robotics, 2nd ed. New York: 
Springer-Verlag, 2016.
[19] G. Holmes, “The cerebellum of man,” Brain, vol. 62, no. 1, 1939.
[20] N. R. Luque, J. A. Garrido, R. C. Carrillo, O. J.-M. D. Coenen, and 
E. Ros, “Cerebellar input configuration toward object model abstraction 
in manipulation tasks,” IEEE Trans. Neural Networks, vol. 22, no. 8, pp. 
1321–1328, Aug. 2011.
[21] D. Bullock and J. Contreras-Vidal, “How spinal neural networks 
reduce discrepancies between motor intention and motor realization,” in 
Variability and Motor Control, K. Newell and D. Corcos, Eds. Champaign, 
IL: Human Kinetics Press, 1993, pp. 183–221.
[22] C. Denk, F. Llobet-Blandino, F. Galluppi, L. A. Plana, S. Furber, and 
J. Conradt, “Real-time interface board for closed-loop robotic tasks on 
the SpiNNaker neural computing system,” in 23rd Int. Conf. Artificial Neu-
ral Networks (ICANN), Sofia, Bulgaria, 2013, pp. 467–474. 
[23] D. Marr, “A theory of cerebellar cortex,” J. Physiol., vol. 202, no. 2, pp. 
437–470, June 1969.
[24] J. S. Albus, “A theory of cerebellar function,” Math. Biosci., vol. 10, 
no. 1–2, pp. 25–61, Feb. 1971.
[25] Y. Yang and S. G. Lisberger, “Purkinje-cell plasticity and cerebellar 
motor learning are graded by complex-spike duration,” Nature, vol. 510, 
no. 7506, pp. 529–532, June 2014.
[26] N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J.-M. D. Coenen, and  
E. Ros, “Cerebellarlike corrective model inference engine for manipula-
tion tasks,” IEEE Trans. Syst. Man Cybern. B, vol. 41, no. 5, pp. 1299–1312, 
Oct. 2011.
[27] E. Ros, R. Carrillo, E. M. Ortigosa, B. Barbour, and R. Agís, “Event-
driven simulation scheme for spiking neural networks using lookup 
tables to characterize neuronal dynamics,” Neural Computation, vol. 18, 
no. 12, pp. 2959–2993, 2006.
[28] V. Chan, S. C. Liu, and A. van Schaik, “AER EAR: A matched silicon 
cochlea pair with address event representation interface,” IEEE Trans. Cir-
cuits Syst. I, vol. 54, no. 1, pp. 48–59, 2007.
[29] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 × 128 120 db 15 μs 
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-State 
Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.
[30] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, 
and D. Rasmussen, “A large-scale model of the functioning brain,” Sci., 
vol. 338, no. 6111, pp. 1202–1205, Nov. 2012.
[31] J. L. Krichmar, “Design principles for biologically inspired cognitive 
robotics,” Biologically Inspired Cognitive Architectures, vol. 1, pp. 73–81, 2012.

Christoph Richter, Bernstein Center for Computational Neuro-
science Munich and Neuroscientific System Theory, Depart-
ment of Electrical and Computer Engineering, Technische 
Universität Munich, Germany. E-mail: c.richter@tum.de.

Sören Jentzsch, fortiss GmbH, Associate Institute of the Tech-
nische Universität Munich, Germany. E-mail: soren. jentzsch@
gmail.com.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

11  IEEE ROBOTICS & AUTOMATION MAGAZINE  •

Rafael Hostettler, Robotics and Embedded Systems, Depart-
ment of Informatics, Technische Universität Munich, Germa-
ny. E-mail: rh@roboy.org.

Jesús A. Garrido, Department of Computer Architecture and 
Technology, Information and Communication Technologies 
Research Center, University of Granada, Spain. E-mail: 
 jesusgarrido@ugr.es.

Eduardo Ros, Department of Computer Architecture and 
Technology, Information and Communication Technologies 
Research Center, University of Granada, Spain. E-mail: eros@
ugr.es.

Alois Knoll, Robotics and Embedded Systems, Department of 
Informatics, Technische Universität Munich, Germany. 
E-mail: knoll@in.tum.de.

Florian Röhrbein, Robotics and Embedded Systems, Depart-
ment of Informatics, Technische Universität Munich, Germa-
ny. E-mail: florian.roehrbein@in.tum.de.

Patrick van der Smagt, fortiss GmbH, Associate Institute of the 
Technische Universität Munich and Robotics and Embedded 
Systems, Department of Informatics, Technische Universität 
Munich, Germany. E-mail: smagt@tum.de.

Jörg Conradt, Neuroscientific System Theory, Department of 
Electrical and Computer Engineering, Technische Universität 
Munich, Germany. E-mail: conradt@tum.de.

 


