
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 • IEEE ROBOTICS & AUTOMATION MAGAZINE 1070-9932/16©2016IEEE

A
nthropomimetic robots sense, behave, interact,
and feel like humans. By this definition, they
require human-like physical hardware and
actuation but also brain-like control and sensing.
The most self-evident realization to meet those

requirements would be a human-like musculoskeletal robot
with a brain-like neural controller. While both
musculoskeletal robotic hardware and neural control
software have existed for decades, a scalable approach that
could be used to build and control an anthropomimetic
human-scale robot has not yet been demonstrated.
Combining Myorobotics, a framework for musculoskeletal
robot development, with SpiNNaker, a neuromorphic
computing platform, we present the proof of principle of a
system that can scale to dozens of neurally controlled,
physically compliant joints. At its core, it implements a

closed-loop cerebellar model that provides real-time,
low-level, neural control at minimal power consumption
and maximal extensibility. Higher-order (e.g., cortical)
neural networks and neuromorphic sensors like silicon
retinae or cochleae can be incorporated.

Combining Hardware and Computer Architecture
A major challenge and vision for articulated robots is to
behave and interact with humans in a safe and natural manner.
Robots that mimic the mechanical properties of the human
build strive toward both attributes simultaneously [1], [2], as,
by design, they possess built-in compliance and relatively natu-
ral—i.e., human-like—mass distribution and dynamics. Mus-
culoskeletal robots in particular offer lightweight, low-inertia
end effectors because the main actuators, the skeletal
muscles, can be kept at rest. Figure 1 shows a design that
coarsely mirrors a human arm. Most of the muscle mass is
rigidly attached to the torso. Muscles connect to the distal
bone only via tendons, which have a negligible weight. In this

© photocredit

Christoph Richter, Sören Jentzsch, Rafael Hostettler, Jesús A. Garrido, Eduardo Ros,
Alois Knoll, Florian Röhrbein, Patrick van der Smagt, and Jörg Conradt

Scalability in Neural Control

Digital Object Identifier 10.1109/MRA.2016.2535081
Date of publication: 26 August 2016

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

3 IEEE ROBOTICS & AUTOMATION MAGAZINE • 3

way, two passive safety aspects, which minimize the head inju-
ry criterion [1], are intrinsic to the anthropomimetic musculo-
skeletal architecture: compliance and minimal moving mass.

Similarly bioinspired approaches on the controller side are
simulated or emulated biological neural networks, because
the human brain and central nervous system are the most rel-
evant reference for natural control of musculoskeletal limbs.
Neural control as done by animals or humans is the most ele-
gant, versatile, and energy-efficient way to use musculoskele-
tal systems. Just as the human-like mechanical build has
inherent passive safety advantages, brain-like control has
desirable active safety features. The human nervous system
implements active compliance on multiple levels. Arguably
more importantly, though, humans are perfectly accustomed
to human-like behavior. Despite the fact that your colleagues
could, if so inclined, injure you or others, working with
humans is generally considered safe and does not require any
special training. Consequently, there is every hope that their
natural, and, in this sense, predictable behavior could gain
anthropomimetic robots human-like safety attributes. The
most demanding requirements and challenges on both the
robotic hardware and the controller side are scalability and
usability. Anthropomimetic robots have been built by numer-
ous research groups, such as the Jouhou System Kougaku
Laboratory of the University of Tokyo and partners within the
European Union-funded project Embodied Cognition in a
Compliantly Engineered Robot (Eccerobot) [3], [4], among
others. However, those systems were custom designed, mostly
using complex hardware and software that inhibits reproduc-
tion across labs and involves high production costs [5]. The
situation is similar with computing platforms. Robotic appli-
cations require flexible interfaces and strict real-time execu-
tion of large neural simulations [6]. Different neuromorphic
architectures and neuroaccelerators have been developed, yet
most of them, like those based on graphics processing units
[7], [8], lack in terms of scalability. Special-purpose systems
like those based on field-programmable gate arrays (FPGAs)
[9], [10] or custom silicon [11], [12] are usually too inflexible
for a nonexpert to implement and investigate custom learning
rules, synapse types, or cell models.

To this end, the prevailing architecture for neural simula-
tions and neural controllers is still the desktop computer,
which we define in the context of this work as a Von Neu-
mann architecture with a modest number of computing cores
that share a common large random access memory (RAM).
Depending on the underlying computations, such architec-
tures are typically not optimal for simulating large neuronal
networks (the human cerebellum alone comprises more than
1011 neurons [13]), which are inherently parallel [12].

In this article, we present the unique combination of mus-
culoskeletal robotics hardware (Myorobotics) and neural con-
trol substrate implemented on a scalable spiking neural
network (SNN) infrastructure (SpiNNaker). We demonstrate
how these technologies can address the aforementioned chal-
lenges and facilitate the development of human-scale anthro-
pomimetic systems that are controlled by brain-like SNNs. It

is our conviction that SpiNNaker and Myorobotics pave the
way for large-scale, complex neurorobots.

SpiNNaker
SpiNNaker [14] is a computer system designed for real-
time simulations of SNNs by the Manchester Advanced
Processor Technologies Research Group. A typical SpiN-
Naker system comprises thousands of ARM968 processing
cores, which can run arbitrary code. They are distributed
on a quasi-seamlessly extensible mesh network that is
spanned by special multicast routers at its nodes. SpiNNa-
ker’s multicast routers are optimized for small (40 or 72 b
wide) data packets. Those SpiNNaker packets typically
resemble action potentials or neural spikes in an SNN sim-
ulation. They typically convey only the source address of
their originating neuron, from which the routers deduce

Figure 1. The complex Myorobotics arm mimicking the complexity
of a human arm without spatula. Nine muscles cooperate to
control the ball-in-socket joint. One of these muscles, relating
to the biceps, is biarticular, as it is attached so that it affects the
motion of two joints, effectively coupling the shoulder and
elbow joint.

Nine Muscles Assembly

Ball-in-Socket Joint

Two Elbow Muscles

MYO-Ganglion

Asymmetric Hinge

Lightweight
Carbon-Fiber Bone

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 • IEEE ROBOTICS & AUTOMATION MAGAZINE

the routing direction based on a user-programmed routing
table. Every SpiNNaker chip houses one router, 18 SpiNNa-
ker cores (each with 96 kB of local memory), and 128 MB
of shared synchronous dynamic RAM.

The Manchester group provides an open software
framework that promotes an event-driven programming
model through the Spin1 application programming inter-
face [14]. Implementations of PyNN, a common interface
for neuronal network simulators [15], and Nengo, a graphi-
cal and scripting-based software package for simulating
large-scale neural systems [16], are provided as a high-level,
user-friendly way to specify neural networks. These net-
works are then automatically mapped, uploaded, and exe-
cuted on SpiNNaker. The entire software framework is
open source, so it can be extended and modified by its
users (see https://github.com/SpiNNakerManchester).

In terms of SNN simulation performance, SpiNNaker
is superior to desktop computers by orders of magnitude.
As a rule of thumb, a single SpiNNaker chip ()P 1W.
can handle a network of 10,000 leaky integrate-and-fire
neurons in real time. A desktop computer needs a high-
performance processor ()P 50 W. with fast memory to
perform the same task. A single SpiNN-5 board contains
48 SpiNNaker chips drawing about the same amount of
electrical power ()P 50 W. but providing about 50 times
the computational power. Finally, the system scales from
18 (single chip) to over 1 million cores (57,600 chips), so
the system size can be adapted to a wide range of neural
network sizes by interconnecting an appropriate number
of SpiNNaker boards. Whereas the maximum system size

might not be relevant to the robotics community, the scal-
ability, power efficiency, flexibility, and ease of use cer-
tainly are. SpiNNaker is designed for real-time SNN
simulations. Given proper interfaces, it offers the prime
opportunity to let large SNNs interact with and adapt to
the real world.

Myorobotics
Myorobotics is a tool kit for modular musculoskeletal robots
that encompasses the full life cycle of robot design. Robots can
be assembled, optimized, and simulated from primitives, then
built and controlled from the same software. The robots are
assembled from a set of primitives: bones, muscles, and joints,
which are shown in Figure 1. The most interesting of those
building blocks, the muscle, is detailed in Figure 2. Its body
is made of three-dimensional (3-D) printed polyamide (PA).
It is actuated by a 100 W dc motor (Maxon Motor EC series)
that coils up a cable—the tendon. Three pulleys route the ten-
don in a triangular fashion. One of the pulleys is attached to a
spring-loaded guiding rod. This mechanism endows the
Myorobotics actuator with a (nonlinear) series elasticity.

The Myorobotics tool kit allows for the creation of a multi-
tude of robot morphologies and enables researchers to inves-
tigate properties and dynamics of musculoskeletal robots. Its
dedicated electronics provide tendon force, velocity, position,
and torque control at 500 Hz directly from a standard desktop
computer with all sensory data available on the bus. At this
update rate, the bandwidth of a single FlexRay interface,
which is employed for high-level control, allows for up to 24
motors that can be driven concurrently.

The framework can be extended easily with new primi-
tives thanks to a standardized structure connector between
the parts as well as a software plug-in that imports the con-
struction directly from the computer-aided design software
SolidWorks. Consequentially, the system allows for primitives
from a broad range of categories and covers many interesting
use cases, such as anthropomimetic arms with complex
shoulder joints (Figure 1), quadrupeds, and hopping robots.
As the whole system was built with the nonrobotic expert
user in mind, it is easy to use, and it allows for fast modifica-
tion of the robot topology. The entire system, including all
three-dimensional (3-D) models, schematics, and all source
code, is open source (see http://www.myorobotics.eu/).

What differentiates Myorobotics from other series elastic
actuators and variable stiffness actuators is that Myorobotics
actuators generate pulling forces between two attachment
points rather than torques between two rigid links. This yields
a fundamentally different control problem. While it can be
reduced to classical joint angle-based control by describing a
muscle Jacobian that maps the lengths of all tendons that
apply forces between two links to a joint angle, this mapping
is, in many cases, not unique; choosing a specific mapping
means reducing the space of possible trajectories. However,
there is ongoing research to design control strategies that
directly map task space trajectories to desired muscle forces
without the intermediate step of calculating target joint

Figure 2. The Myorobotics muscle with its components. The
tendon (red cable) is routed in a triangular fashion in the muscle
to create a nonlinear net spring force. The tendon force is sensed
by measuring the spring displacement through a magnetic strip
fixed to the guiding rod of the spring that slides by a hall-effect
encoder. This allows calculation of the respective force from a
known spring constant and tendon routing geometry.

Tendon
Pulleys

Coiled
Up

Tendon

Brushless
dc Motor
(100 W)

Exchangeable Spring

Linear Encoder
Senses Spring
Compression,

Motor
Driver
Board

3-D-Printed
Body (PA)

Tension Force

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

5 IEEE ROBOTICS & AUTOMATION MAGAZINE •

angles. This is especially interesting in the context of this arti-
cle, as all biological muscle-based systems solve this control
problem rather than a target joint angle/torque problem.
Myorobotics is thus a much closer model of the behavior of
biological musculoskeletal systems than series elastic actua-
tors such as the mechanically adjustable compliance and con-
trollable equilibrium position actuator.

Neural Circuitry
We focus on implementing a cerebellar model to control the
dynamics of the robotic system. Even though the major role
of the cerebellum seems to be supervised learning of motor
patterns [17], it is clear that vertebrate limb control cannot be
reduced to cerebellar functioning [18]. An individual with
cerebellar lesions may be able to move the arm to successfully
reach a target and to successfully adjust the hand to the size of
an object. However, the action cannot be made swiftly and
accurately, and the ability to coordinate the timing of the two
subactions is lacking [19]. Vertebrate movement generation
involves the basal ganglia, filtering out unwanted movements
[17], as well as the motor and parietal cortices. Movement
realization, of course, also involves the spinal cord, which
controls antagonism and seems to take care of nonlinearities
in muscular functionality. Our model, however, focuses on a
model of the cerebellar neurocircuitry for the following rea-
sons. First, the fast learning of cerebellar circuitry is important
for fast adaptation to environmental influences [20]. Second,
some functionality of the spinal cord can be simulated with
simple proportional-integral differential (PID) controllers
[21], especially for the comparatively simple actuator behavior
that our system exhibits.

Setup

Robot
The robot employed in our proof of concept is the most basic
setup that can be built with Myorobotics, consisting of a sin-
gle symmetric hinge joint with two bones and two muscles
driving it (Figure 3). The system uses only the motor driver
boards from the Myorobotics electronics, which we interface
using a controller area network (CAN) bus. Larger Myorobot-
ics systems connect the driver boards to intermediate control-
ler boards (MYO-Ganglia) that offer a higher-level,
higher-bandwidth control interface via FlexRay.

Figure 3(a) highlights the individual parts of our joint
assembly. The two artificial muscles (m1, m2) are connected
to the lower bone (bl). Tendons connect them to the opposite
side of the hinge joint (j). Each muscle consists of a brushless
dc motor (d) that coils up the tendon (t); we will call this the
actuator. The tendon is routed via a spring (s) and exits at a
fixed outlet (o). The mechanically linear spring is combined
with a triangular routing of the tendon (Figure 2), making the
net spring behavior nonlinear. Because the actuators can only
pull, an antagonist actuator is required. By pretensioning both
actuators, both springs get contracted, thereby changing the
mechanical stiffness of the system.

Interfaces
To connect SpiNNaker to robotic sensors and actuators, we
have developed a hardware interface that acts like another
node on SpiNNaker’s mesh network [22]. It translates sensor
data into SpiNNaker packets and SpiNNaker packets into, for
example, motor commands. The microcontroller-based
design allows us to connect SpiNNaker to many different bus
systems, including universal asynchronous receiver/transmit-
ters (UARTs) and CANs. We use the former for communica-
tion with an external desktop computer, the latter for
Myorobotics actuators and sensors (Figure 4). Although the
interface board allows for real-time injection of neural spike
trains into SpiNNaker, our current implementation saves
bandwidth by handling the de- and encoding between robot
data and neural spikes directly on SpiNNaker. The inset in
Figure 4 illustrates this setup: sensory updates arrive as a
SpiNNaker packet’s payload at the respective ARM cores that
are continuously emitting spike trains encoding the current
sensory state. Likewise, dedicated motor cores continuously
translate incoming spike trains to motor commands.

The typical translations performed on the input SpiNNaker
cores are either rate or population coding, the latter with
Gaussian receptive fields and linearly distributed preferred val-
ues. Because SpiNNaker cores can be freely programmed,
more flexible translation schemes, for example, involving self-
organizing maps, can be implemented. Our output cores
translate the rate of incoming spikes from within the SpiNNa-
ker mesh to a motor output signal via a linear transformation
and an exponential falloff in time. The time window and
update cycle is typically 20 ms. Again, more complex transla-
tion schemes can be implemented. Those could involve pro-
prioceptive feedback from the Myorobotics actuators and, in
this way, emulate the macroscopic or microscopic behavior of
real skeletal muscles. From a PyNN network point of view,
input and output are handled and set up like normal neural
populations. The low-level implementation as C code is
wrapped by PyNN objects and thus hidden from the PyNN

Figure 3. The single-joint Myorobotics proof-of-principle setup
shown as (a) a schematic and (b) a photograph with a SpiNN-5
48-chip SpiNNaker neuromorphic computer. m1 and m2: two
artificial muscles; b1: the lower bone; j: the hinge joint; d: the
brushless dc motor; t: the tendon; s: the spring; and o: the fixed outlet.

t

o

m1 m2

j

s

d bl

(a) (b)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 • IEEE ROBOTICS & AUTOMATION MAGAZINE

programmer. All settings like time constants or scale factors
can be adjusted in a user-friendly, object-oriented fashion.

Network Model
As a first demonstration of our system, we chose a cerebellar
model that has previously been used to operate robots [20].
Our network model is akin to a Marr–Albus style cerebellum
[23], [24]. Its specific setup including all cell parameters is
derived from [20]. Although several network configurations
were evaluated in [20], we have considered the network that
receives an implicit estimation of the robot actual state actz
and the set point setz . Figure 5 illustrates the network struc-
ture. The network is composed of leaky integrate-and-fire
neurons with biologically realistic cell parameters and plausi-
ble divergence/convergence ratios be tween the different lay-
ers. As previously done in [20], we are omitting inhibitory
interneurons and the olivo-cerebellar loop to arrive at a most
basic and deterministic model. However, the network still
keeps the main roles that have been proposed for each layer in
the Marr–Albus model [23], [24], i.e., input sparse recoding of
the mossy fiber (MoF) inputs in the granular layer and super-
vised learning in the Purkinje cells (PuCs).

Each of the two motors is controlled by the spike rate of
four deep cerebellar nuclei (DCN) cells, which receive excit-
atory input from 32 MoFs and inhibitory input from eight
PuCs. MoF spiking activity (representing sensory input, actual
state and control data, and target angle) produces sequences of
active granule cells (GrCs). Because each of the 256 GrCs

receives input from a unique set of
MoF cells, a sparse coding of the input
is made available in the parallel fibers
(PFs), the long axons of the GrCs.

The inhibitory corrective term that
the DCN receives from PuCs is
shaped through supervised learning
between PFs and PuCs. The teaching
signal encoding the actual error
reaches the PuCs through the inferior
olive (InO), producing complex
spikes. This particular type of long-
lasting spikes has been demonstrated
to induce long-term depression in the
PF-PuC synapses when correlated
with simultaneous PF spikes [25].
This learning mechanism has been
implemented by using a kernel func-
tion ()w t tGrC InOD - relating mutual
InO–GrC spike timing with synaptic
weight changes Δw (see [20] for
details). It basically punishes synapses
that likely lead to erroneous behavior:
if a GrC spike on a GrC-PuC synapse
leads to some action and is followed
by an InO spike after a characteristic
response time, say 100 ms, then the
respective synaptic weight, which was

likely responsible for that error, is depressed [26]. To com-
pensate the long-term depression term, long-term potentia-
tion is induced every time a presynaptic spike occurs in the
PFs. The effective spike timing-dependent plasticity func-
tion ()w t tInO GrCD - is plotted in Figure 5. Interestingly, this
learning rule also deals with the long delay that has been
observed in the action-perception loop of the nervous sys-
tem that has been estimated at around 100 ms [26].

This rather unusual learning rule would be impossible to
implement on many neuroaccelerator platforms. SpiNNa-
ker, on the other hand, is freely programmable. Just like the
previously discussed input and output populations, we
implemented this learning rule as low-level C code on SpiN-
Naker and wrapped it into a PyNN object for the high-level
network description. We chose a lookup-table (LUT)-based
approach, in which the LUTs for the temporal kernel are
compiled by the Python front end. The respective SpiNNa-
ker cores buffer up to 160 spikes per simulated synapse and
evaluate their mutual timing and the corresponding synap-
tic weight change periodically.

The reference network implementation, which we port-
ed to SpiNNaker, is running on an event-driven simulator
based on LUTs (EDLUT, see http://edlut. googlecode.com)
[27], [7], a high-performance event-driven neural network
simulator software. We developed a framework that trans-
lates a high-level text-based network description for either
EDLUT or PyNN, runs the simulation on the PC or SpiN-
Naker, respectively, and compares the resulting network

Figure 4. The logical and electrical layout of our system. The frame and arrow colors
indicate bus types. The SpiNN-IO board provides a real-time interface between the robot,
the desktop computer, and SpiNNaker. Communicating with a SpiNNaker chip’s router
via SpiNN-Link provides the input SpiNNaker cores with sensory data x,y. It receives
motor commands z from output cores that it translates and forwards to the robot.

CAN

UART
PC

SpiNN-IO

SpiNN

Link

S
en

so
r

in
: x

, y

M
ot

or

O
ut

: z

x as Payload

ARM
Core

SpiNNaker Router

S
pi

N
N

Li
nk

Spike Train

y as Payload

ARM
Core

Spike Train
z as Payload

ARM
Core

Spike Train

Robot

SpiNNaker

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

7 IEEE ROBOTICS & AUTOMATION MAGAZINE •

output. Through the use of a pro-
grammable power supply (Manson
HCS-3202) we can monitor SpiNNa-
ker’s run-time power consumption
and compare it to that of EDLUT
running on our desktop computer.
This way our SpiNNaker implemen-
tation could be rigorously checked
and tested against the reference
implementation on EDLUT.

Our SpiNNaker implementation
matches the EDLUT reference well.
Minor deviations mainly stem from the
fact that the SpiNNaker implementa-
tion is tick based and uses fixed-point
representations, while EDLUT is purely
event driven and uses double precision
floating point. SpiNNaker cores lack a
floating point unit, so floating point
computations on SpiNNaker would be
inefficient. The Manchester team made
this design decision to save on power
consumption and die area per core. A
comparison to the relatively efficient
desktop-based software simulator
EDLUT highlights SpiNNaker’s power efficiency. Depend-
ing on the network layout and its input, SpiNNaker’s energy
consumption is just one hundredth to one tenth that of
EDLUT running on a typical desktop computer—a consid-
erable asset especially relevant for autonomous robots.

Graphical User Interface
While our system can run headless, in a closed-loop fashion,
we have built a graphical user interface (GUI) for live moni-
toring and interaction with the neural simulation on SpiNNa-
ker. The software runs on an external computing station,
receives data from the CAN bus, and uses UART to inject
data into SpiNNaker via the SpiNN-IO board (Figure 4).
Through the GUI, the user can control the target joint angle
of the robot and adjust the PID parameters determining the
teaching (error) signal calculation. The teaching signal as well
the target angle are sent to SpiNNaker at an update frequency
of 20 Hz. As for debugging purposes and performance evalu-
ation, the user can monitor the current CAN data, the devia-
tion between current and target joint angle, and the current
error signal as well as the live spike train of selected neuron
populations.

Evaluation
Figure 6 shows the performance of our proof-of-principle
cerebellar model running in real time on SpiNNaker while
controlling the antagonistic Myorobotics joint. It illustrates
neural spikes as colored raster plots and its control and senso-
ry input values over time as black solid lines, where applica-
ble. There are separate PuC (dark blue spikes), InO (red
spikes), and DCN (purple spikes) populations, for the left

(index L) and right (index R) actuator. The error signals
,L Ree are computed as a PID error signal ()E set actz z- by

the GUI. The corresponding spike trains are emitted by the
InO populations. They shape the weights between the GrCs
(not shown) and the respective PuCs. The control input is the
joint angle set point ()tsetz as given by the GUI, which corre-
sponds closely to the MoF spikes of the MoFset population.
The other control input is the actual joint angle ()tactz as
measured by a magnetic angle sensor within the Myorobotics
joint. MoFact is the corresponding neural population. The
SpiNN-IO board reads actz directly from the CAN bus,
receives , ,L Rsetz e e via UART (from a universal serial bus-
UART interface), and streams all values into SpiNNaker via
SpiNN-Link, where they are translated into spike trains, as
illustrated in Figure 4.

Control Performance
In the present setup the teaching signal conveys the mis-
match between the actual and the target joint angle. Conse-
quently, to minimize that error and maximize the agreement
between actz and setz , the network learns to perform antago-
nistic control. In our scenario, the network learns to follow
the given sinusoidal trajectory ()tsetz within a few revolu-
tions. The learning is exclusively based on the intrinsic plas-
ticity mechanism at GrC-PuC synapses, as previously
explained in the “Network Model” section. Figure 6(a)
shows the performance of the naive network with randomly
initialized weights at the GrC-PuC synapses. In this state, the
cerebellar model does not even know right from left. There-
fore, the joint angle actz (MoFact) does not track the given
trajectory ()tsetz (MoFset) at all. As an example, at t 15 s= ,

Figure 5. A schematic drawing of our cerebellar model along with its input (actual angle
actz , set point setz , control error e) and output (motor pulsewidth ~). Single neurons or

spike sources are represented by dots, populations are marked by rectangular frames,
and the thin lines connecting neurons represent synapses. The graph represents the
learning rule governing weight changes ∆w at GrC-PuC synapses in response to the
relative timing of GrC and InO spikes as they arrive at PuC dendrites.

Set Point

State

Error

PID

φact

φset

∋

MoF

DCN

InO

Motor

Out
 inh.exc. ω

PuC

GrC

exc.

−150 −100 −50 0
−1.0

−0.5

0.0

tGrC − tInO (ms)

∆w
 (

ar
b.

 U
ni

t)

Teaching

exc., Plastic

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 • IEEE ROBOTICS & AUTOMATION MAGAZINE

setz is at the rightmost position, actz still on the far left side.
In this situation, the right muscle should clearly pull more.
The teaching signal reacts accordingly: Re is at its maximum,
resulting in a high InOR firing rate. The corresponding GrC-
PuCR weights decrease accordingly. In subsequent similar
situations this results in less DCNR inhibition by the PuCR
population and more motor output ωR. So after five minutes
of run time (and learning), the system can follow the trajec-
tory much better [Figure 6(b)]: actz tracks setz much more
closely, and the cerebellar model has learned to do antagonis-
tic control. The cerebellum can also learn to follow different
waveforms or manually controlled trajectories (see https://
youtu.be/y6MwOtW3_kQ for a video demonstration).

Note that, in the given example, the network output is the
sole control input to the robot arm. It controls the motors
directly via pulsewidth modulation. While this nicely dem-
onstrates the learning capabilities of the network, it does not
mirror the biological antetype. In a more biologically realistic
scenario, the cerebellum would output a corrective term that
adds to a (cortical) forward-kinematic control signal.

Scalability and Constraints
Our present configuration runs on a single SpiNNaker chip. It
utilizes only 16 SpiNNaker cores, 2% of a single SpiNN-5
board. Consequently, there is ample room for adding more
joints and actuators as well as higher-level (e.g., cortical) neu-
ral networks. With SpiNNaker being a scalable system, com-
puting resources are clearly no longer the bottleneck.

Our SpiNN-IO board connects the robot and the desktop
computer with SpiNNaker. Its microcontroller limits the
effective, combined update rate of input and output popula-
tions to about 500 kHz [22]. In effect, our current system
could handle 500 input/output (I/O) populations at an

update rate of 1 kHz. As each I/O population occupies a sin-
gle SpiNNaker core, those neural populations would fill
about 60% of a single SpiNN-5 board. A limit of 500 sensory
streams at 1 kHz update rate translates to roughly 100 actua-
tors, or dozens of joints that could be controlled with a single
or few SpiNN-5 boards—within an order of magnitude to a
human-scale robot. This limit could be alleviated by using 1)
more than one SpiNN-IO (on separate SpiNN-5 boards), or
2) a modified SpiNN-IO design that uses SpiNNaker’s
interboard connectors. FPGAs on the SpiNN-5 board multi-
plex eight SpiNN-Link ports on each connector.

The remaining bottleneck is the communication between
SpiNN-IO and the robot. In our current setting, we can use
up to four separate CAN buses, which can manage up to four
joints (eight Myorobotics actuators) at an update rate of 500
Hz. By using the full Myorobotics electronics, namely up to
six MYO-Ganglia connected to a dedicated FlexRay control-
ler, up to 12 joints (24 actuators) can be used at the same
update rate. Again, with multiple SpiNN-IO boards, each
with a dedicated FlexRay controller, we can alleviate this limit.

Discussion
By demonstrating the control of a musculoskeletal joint with
a simulated cerebellum running in real time, we successfully
combined robotic hardware (Myorobotics) and simulation
platform (SpiNNaker). Both Myorobotics and SpiNNaker
offer scalability and usability: They can be extended in a
straightforward manner, with no major roadblocks in sight
toward systems approaching human-level complexity. Of
course, many components still have to be added to arrive at a
system that can interact with its environment in an intelligent
way. Fortunately, a number of suitable technologies are readily
available today.

Figure 6. The performance of our cerebellar real-time simulation on SpiNNaker. (a) Naive cerebellum and (b) five minutes later: trained
cerebellum. Colored semiopaque squares symbolize spike events (spike density ? color saturation), left ordinate indicates the neuron ID.
The black solid curves indicate the respective angle z (MoF input), motor output ~ (DCN output), or error signal e (InO input). Indices: L
and R, left and right; act, actual sensory values; set, set point.

0 10 20 30 40 50
t (s)

InOR

PuCR

DCNR

InOL

PuCL

DCNL

MoFact

MoFset
−60°
0
60°

−60°
0
60°

0
100%

0
100%
0
100%

0
100%

(a)

φ s
et

φ a
ct

ω
L

ω
R

L∋

R∋

300 310 320 330 340 350
t (s)

InOR

PuCR

DCNR

InOL

PuCL

DCNL

MoFact

MoFset
−60°
0
60°

−60°
0
60°

0
100%

0
100%
0
100%

0
100%

(b)

φ s
et

φ a
ct

ω
L

ω
R

L∋

R∋

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

9 IEEE ROBOTICS & AUTOMATION MAGAZINE •

Sensors
While any sensor could be added to our framework, event-
based systems are the most natural fit. Their sensory address-
event-representation (AER) maps directly onto SpiNNaker
packets, i.e., neural spikes in SNN simulations. The events
emitted by an AER auditory sensor, or silicon cochlea [28],
for instance, represent a sound’s momentary frequency-
resolved power spectrum. Their address encodes a specific
frequency. The repetition rate of events with the same address
encodes the respective spectral weight. Events emitted by an
AER vision sensor, or silicon retina, typically represent a sud-
den, pixel-local change in brightness. Here, the address
encodes the pixel coordinate. Silicon retinae [22], [29] and
cochleae have previously been integrated with SpiNNaker.
They are perfectly compatible with our interface.

Intelligence
SpiNNaker can serve as a computing back end for PyNN [15]
or Nengo [16]. Neural networks specified in those languages
can often be run directly on SpiNNaker or require only minor
modifications to be made, when porting a network from one
compute back end to another. Missing software features, in our
case a learning rule and I/O handlers, can be added to SpiN-

Naker’s open source framework. Many available models can be
ported and integrated into the system with minor effort.

Systems
Neural models available for either PyNN or Nengo include
diverse brain structures. In fact, the world’s largest functional
brain model, Spaun [30], is defined in Nengo. An embodied
version of the model that can interact with the physical world
as well as with humans would be an interesting test bed for
human-robot interaction and cognitive science [31]. A
Spaun-like brain model combined with advanced musculo-
skeletal robots like Roboy [3] (Figure 7) would herald a whole
new era of robotic research. Our proof-of-concept system
combining SpiNNaker and Myorobotics paves the way for
exactly these kinds of endeavors, which we hope to stimulate
with this article.

A typical human cerebellum comprises about 100 bil-
lion neurons [13], about as many as the rest of the brain.
A realistic simulation of such a complex large-scale sys-
tem will rely not just on massive computing resources; it
also requires a detailed and realistic environment to inter-
act with. Therefore, real-time capable neurosimulators in
conjunction with robots will eventually become an essen-
tial tool of brain research. Practical and scalable systems
like the one presented enable a mutual interaction
between neuroscience and robotics: robots can help to
advance neuroscience just as neuroscience helps us to cre-
ate more natural robots.

Acknowledgments
We wish to thank N. Luque for helpful discussions regarding
cerebellar motor control; S. Temple and the SpiNNaker Man-
chester team for their invaluable hardware, software, and sup-
port; and the Myorobotics team for providing us with robot
parts. Christoph Richter and Jörg Conradt acknowledge
funding and support by the German Federal Ministry for
Education and Research through the Bernstein Center for
Computational Neuroscience Munich (01GQ1004A). Sören
Jentzsch, Rafael Hostettler, Alois Knoll, Florian Röhrbein, and
Patrick van der Smagt acknowledge funding from the Euro-
pean Union Seventh Framework Program (FP7/2007-2013)
under grant agreement 604102 (Human Brain Project)
and Rafael Hostettler under grant agreement 288219
(Myorobotics). Patrick van der Smagt also acknowledges sup-
port from DLR. Jesús A. Garrido and Eduardo Ros would like
to acknowledge Spanish National Project NEUROPACT
(TIN2013-47069-P). Jesús A. Garrido also acknowledges
funding from the University of Granada and the European
Union H2020 Framework Program (H2020-MSCA-IF-2014)
under grant agreement 653019 (CEREBSENSING).

References
[1] A. Bicchi and G. Tonietti, “Fast and ‘soft-arm’ tactics [robot arm
design],” IEEE Robot. Automat. Mag., vol. 11, no. 2, pp. 22–33, June 2004.
[2] O. Holland and R. Knight, “The anthropomimetic principle,” in Proc.
AISB06 Symp. Biologically Inspired Robotics, Bristol, UK, 2006, pp. 115–123.

Figure 7. Roboy, a human-like, musculoskeletal robot with 28
degrees of freedom and 48 motors, to be controlled by brain-
inspired systems. (Photograph courtesy of Adrian Baer.)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 • IEEE ROBOTICS & AUTOMATION MAGAZINE

[3] R. Pfeifer, H. G. Marques, and F. Iida, “Soft robotics: The next gener-
ation of intelligent machines,” in Proc. 23rd Int. Joint Conf. Artificial Intelli-
gence (IJCAI-13), Beijing, China, 2013, pp. 5–11.
[4] S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D.
Devereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H. G.
Marques, P. Milosavljevic, B. Mitra, B. Svetozarevic, V. Potkonjak, R.
Pfeifer, A. Knoll, and O. Holland, “Toward anthropomimetic robotics:
Development, simulation, and control of a musculoskeletal torso,” Artifi-
cial Life, vol. 19, no. 1, pp. 171–193, Jan. 2013.
[5] H. G. Marques, M. Christophe, A. Lenz, K. Dalamagkidis, U.
Culha, M. Siee, P. Bremner, and the Myorobotics Project Team,
“Myorobotics: A modular toolkit for legged locomotion research
using musculoskeletal designs,” in Proc. 6th Int. Symp. Adaptive
Motion of Animals and Machines (AMAM’13), Darmstadt, Germany,
2013, pp. 10–15.
[6] J. Conradt, G. Tevatia, S. Vijayakumar, and S. Schaal, “On-line learn-
ing for humanoid robot systems,” in Proc. Int. Conf. Machine Learning
(ICML2000), Stanford, CA, 2000, pp. 191–198.
[7] F. Naveros, N. Luque, J. Garrido, R. Carrillo, M. Anguita, and E. Ros,
“A spiking neural simulator integrating event-driven and time-driven
computation schemes using parallel CPU-GPU co-processing: A case
study,” IEEE Trans Neural Netw. Learn. Syst., vol. 26, no. 7, pp. 1567–1574,
July 2015.
[8] T. Yamazaki and J. Igarashi, “Realtime cerebellum: A large-scale
spiking network model of the cerebellum that runs in real time using
a graphics processing unit,” Neural Netw., vol. 47, pp. 103–111, Nov.
2013.
[9] E. Ros, E. Ortigosa, R. Carrillo, and M. Arnold, “Real-time comput-
ing platform for spiking neurons (RT-spike),” IEEE Trans. Neural Net-
works, vol. 17, no. 4, pp. 1050–1063, July 2006.
[10] R. Agis, E. Ros, J. Diaz, R. Carrillo, and E. M. Ortigosa, “Hardware
event-driven simulation engine for spiking neural networks,” Int. J. Elec-
tronics, vol. 94, no. 5, pp. 469–480, Apr. 2007.
[11] J. Schemmel, D. Bruderle, A. Grubl, M. Hock, K. Meier, and S. Mill-
ner, “A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proc. 2010 IEEE International Symp. Circuits and Systems
(ISCAS), Paris, France, pp. 1947–1950.
[12] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I.
Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P.
Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrat-
ed circuit with a scalable communication network and interface,” Sci.,
vol. 345, no. 6197, pp. 668–673, Aug. 2014.
[13] B. B. Andersen, L. Korbo, and B. Pakkenberg, “A quantitative study
of the human cerebellum with unbiased stereological techniques,” J.
Comp. Neurol., vol. 326, no. 4, pp. 549–560, 1992.
[14] S. Furber, F. Galluppi, S. Temple, and L. Plana, “The SpiNNaker
project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.
[15] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D.
Pecevski, L. Perrinet, and P. Yger. (2009, Jan.). PyNN: A common inter-
face for neuronal network simulators. Front. Neuroinformatics [Online]. 2,
p. 11. Available: http://www.frontiersin.org/neuroinformatics/10.3389/
neuro.11.011.2008/abstract
[16] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D.
Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith. (2014, Jan.).
Nengo: A Python tool for building large-scale functional brain models.

Front. Neuroinformatics [Online]. 7, p. 48. Available: http://www.
frontiersin. org/neuroinformatics/10.3389/fninf.2013.00048/abstract
[17] K. Doya, “Complementary roles of basal ganglia and cerebellum in
learning and motor control,” Curr. Opin. Neurobiol., vol. 10, no. 6, pp. 732–
739, 2000.
[18] P. van der Smagt, G. Metta, and M. A. Arbib, “Neurorobotics: From
sensing to action,” in Springer Handbook of Robotics, 2nd ed. New York:
Springer-Verlag, 2016.
[19] G. Holmes, “The cerebellum of man,” Brain, vol. 62, no. 1, 1939.
[20] N. R. Luque, J. A. Garrido, R. C. Carrillo, O. J.-M. D. Coenen, and
E. Ros, “Cerebellar input configuration toward object model abstraction
in manipulation tasks,” IEEE Trans. Neural Networks, vol. 22, no. 8, pp.
1321–1328, Aug. 2011.
[21] D. Bullock and J. Contreras-Vidal, “How spinal neural networks
reduce discrepancies between motor intention and motor realization,” in
Variability and Motor Control, K. Newell and D. Corcos, Eds. Champaign,
IL: Human Kinetics Press, 1993, pp. 183–221.
[22] C. Denk, F. Llobet-Blandino, F. Galluppi, L. A. Plana, S. Furber, and
J. Conradt, “Real-time interface board for closed-loop robotic tasks on
the SpiNNaker neural computing system,” in 23rd Int. Conf. Artificial Neu-
ral Networks (ICANN), Sofia, Bulgaria, 2013, pp. 467–474.
[23] D. Marr, “A theory of cerebellar cortex,” J. Physiol., vol. 202, no. 2, pp.
437–470, June 1969.
[24] J. S. Albus, “A theory of cerebellar function,” Math. Biosci., vol. 10,
no. 1–2, pp. 25–61, Feb. 1971.
[25] Y. Yang and S. G. Lisberger, “Purkinje-cell plasticity and cerebellar
motor learning are graded by complex-spike duration,” Nature, vol. 510,
no. 7506, pp. 529–532, June 2014.
[26] N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J.-M. D. Coenen, and
E. Ros, “Cerebellarlike corrective model inference engine for manipula-
tion tasks,” IEEE Trans. Syst. Man Cybern. B, vol. 41, no. 5, pp. 1299–1312,
Oct. 2011.
[27] E. Ros, R. Carrillo, E. M. Ortigosa, B. Barbour, and R. Agís, “Event-
driven simulation scheme for spiking neural networks using lookup
tables to characterize neuronal dynamics,” Neural Computation, vol. 18,
no. 12, pp. 2959–2993, 2006.
[28] V. Chan, S. C. Liu, and A. van Schaik, “AER EAR: A matched silicon
cochlea pair with address event representation interface,” IEEE Trans. Cir-
cuits Syst. I, vol. 54, no. 1, pp. 48–59, 2007.
[29] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 × 128 120 db 15 μs
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-State
Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.
[30] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang,
and D. Rasmussen, “A large-scale model of the functioning brain,” Sci.,
vol. 338, no. 6111, pp. 1202–1205, Nov. 2012.
[31] J. L. Krichmar, “Design principles for biologically inspired cognitive
robotics,” Biologically Inspired Cognitive Architectures, vol. 1, pp. 73–81, 2012.

Christoph Richter, Bernstein Center for Computational Neuro-
science Munich and Neuroscientific System Theory, Depart-
ment of Electrical and Computer Engineering, Technische
Universität Munich, Germany. E-mail: c.richter@tum.de.

Sören Jentzsch, fortiss GmbH, Associate Institute of the Tech-
nische Universität Munich, Germany. E-mail: soren. jentzsch@
gmail.com.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

11 IEEE ROBOTICS & AUTOMATION MAGAZINE •

Rafael Hostettler, Robotics and Embedded Systems, Depart-
ment of Informatics, Technische Universität Munich, Germa-
ny. E-mail: rh@roboy.org.

Jesús A. Garrido, Department of Computer Architecture and
Technology, Information and Communication Technologies
Research Center, University of Granada, Spain. E-mail:
 jesusgarrido@ugr.es.

Eduardo Ros, Department of Computer Architecture and
Technology, Information and Communication Technologies
Research Center, University of Granada, Spain. E-mail: eros@
ugr.es.

Alois Knoll, Robotics and Embedded Systems, Department of
Informatics, Technische Universität Munich, Germany.
E-mail: knoll@in.tum.de.

Florian Röhrbein, Robotics and Embedded Systems, Depart-
ment of Informatics, Technische Universität Munich, Germa-
ny. E-mail: florian.roehrbein@in.tum.de.

Patrick van der Smagt, fortiss GmbH, Associate Institute of the
Technische Universität Munich and Robotics and Embedded
Systems, Department of Informatics, Technische Universität
Munich, Germany. E-mail: smagt@tum.de.

Jörg Conradt, Neuroscientific System Theory, Department of
Electrical and Computer Engineering, Technische Universität
Munich, Germany. E-mail: conradt@tum.de.

