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Abstract— We present a neuro-inspired system for the inves-
tigation of fine dynamic haptic discrimination for neurorobotic
and neuroprosthetic applications. A Braille reading task is
adopted as case study. First, tactile inputs are encoded at the
level of primary afferents mimicking human mechanoreceptors.
Then, a network of simulated second-order neurones processes
these primary signals prior to their transmission to a down-
stream classifier. The latter estimates the likelihood distribution
of all Braille characters which is used to determine the letter
being read. We also investigate how this distribution could be
used to regulate the fingertip acceleration to maximise Braille-
reading performances. We employ the spiking neural network
paradigm to model first- and second-order neural responses,
and apply an information theoretical analysis to measure
the neurotransmission reliability of the spiking patterns from
peripheral to more “central” areas of the system.

Our results show that the firing patterns of first- and second-
order responses convey enough information to achieve an offline
perfect discrimination of the entire Braille alphabet as rapidly
as 250 ms after the occurrence of the first spike. Furthermore,
89% of the scanned characters are correctly recognised during
an online Braille reading task at constant velocity. Finally, we
show that the class probability distributions obtained during
reading, can be used to optimise the scanning velocity.

Index Terms— Tactile information coding, Dynamic haptic
discrimination, Braille reading, Primary tactile afferents, Sec-
ond order cuneate neurones, Artificial touch sensor, Bayesian
classifiers, Metrical information theory.

I. INTRODUCTION

During haptic exploration, information about the environ-
ment is conveyed through the forces that are applied to the
skin of the hand, notably to the fingertips which constitute
the most sensitive of its parts and are prominently involved
in object manipulation/recognition tasks. Mechanoreceptors
innervating the epidermis are stimulated by the mechanical
indentations and deformations of the skin, and transmit the
information to the spinal cord and to the cuneate nucleus
(CN) of the brainstem. The CN projects to several areas
of the central nervous system, including the cerebellum
and the thalamus, which in turn projects to the primary
somatosensory cortex. Processing along this pathway allows
haptic information to be interpreted and leads to adaptive
motor responses, such as in the case of object manipulation
and tactile exploration.
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So far, very few works modelled the activity of primary
afferents in monkeys [1], [2] and humans [3] and computa-
tional studies on second order cuneate neurone networks are
lacking [4]. Also, to the best of our knowledge, no extensive
investigation has been carried out on the transmission of
neural signals through the multi-stage coding mechanisms
from the periphery to central areas of the nervous system.

Here, we propose a neurorobotic framework to study active
sensing during a fine touch discrimination task with the aim
of shedding light on the principles underlying neurotransmis-
sion in humans for improving neurorobotics and neuropros-
thetics. We take into account the encoding/decoding process
of neural signals occuring at the first and second order
somatosensory stages and we test how well a probabilistic
decoder can discriminate the stimuli given the second order
network output.

We simulate skin indentation protocols in which Braille-
like tactile characters are dynamically scanned by an artificial
touch sensor. Analogue deformation signals act as inputs to
a network of leaky-integrate-and-fire neurones (LIF), which
perform an analogue-to-spike conversion and mimick the role
of cutaneous mechanoreceptors. In particular, we model the
activity of Slow Adapting type I (SA-I) mechanoreceptors,
in terms of both spiking discharge and receptive fields (see
[5], for a recent review). The population of LIF neurones
projects onto a network of second order units modelling CN
responses. We employ the Spike Response Model (SRM) [6]
to capture the stochastic nature of unitary cuneate responses.
Downstream from the CN network, a naive Bayesian clas-
sifier computes the probability distribution of all Braille
characters online, on the basis of the ongoing cuneate pop-
ulation activity. The likelihood distributions provided by the
Bayesian classifier are ultimately used to discriminate the
letter currently scanned and to devise an adapted velocity
trajectory optimising the scanning/discrimination time.

II. MATERIAL AND METHODS

Figure 1 shows the complete robotic setup used for the
Braille scanning task. We use a set of 26 different probes
reproducing a scaled version (1:1.67) of all Braille characters
(Fig. 1B) to stimulate an artificial touch sensor (simulating
the human fingertip deformations exerted by Braille dots).
The touch sensor is rubbed over all Braille characters at
constant velocity. Its analogue responses are encoded and
decoded by the simulated first- and second-order afferents
(mechanoreceptors and cuneate neurones respectively), prior
to the “high-level” probabilistic classification.
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Fig. 1. Overview of the entire encoding/decoding pathway and robotic
setup. (A) Following the loop, starting at the top left: we employ Braille
characters as tactile stimuli to indent a capacitive artificial touch sensor. The
analogue responses provided by the touch sensor drive a network of Leaky-
Integrate-and-Fire (LIF) neurones [7] converting analogue signals into
spiking activity and mimicking fingertip mechanoreceptors. The population
of LIF neurones projects onto a network of Spike-Response-Model units [6]
implementing second order cuneate nucleus (CN) cells of the brainstem. The
outgoing activity is decoded using a Naive Bayesian Classifier whose output
allows a speed controller to devise an improved velocity for the fingertip’s
movement. (B) From left to right: Scaled Braille characters used as stimuli;
artificial fingertip (without its neoprene layer); LIF and SRM neurones
with their outgoing spiking activity. (C) Braille alphabet. (D) LIF neurones
modelling mechanoreceptor activity fulfil a topological mapping of fingertip
regions (top). CN cell receptive fields are built so as to collect activity
of either a single cell or different possible combinations of two or three
adjacent mechanoreceptors (bottom). (E) The artificial fingertip mounted
on a robotic hand/arm setup ( c© Institute of Robotics and Mechatronics,
German Aerospace Center).

A. The artificial touch sensor

An artificial skin prototype1 [8], [9] was initially used to
collect and characterise a first dataset of analogue responses
to Braille character indentations. This artificial fingertip
consists of 24 capacitive square sensors disposed according

1Developed at the Italian Institute of Technology (IIT), Genoa, Italy.

to a rectangular grid layout. Each sensor has a dimension of
approximately 3 mm and the inter-centre distance is 4 mm
(Fig. 1B), for a total sensitive surface of approximately 18×
23 mm. The array is covered by a 2.5 mm thick neoprene
layer in order to modulate the pressure exerted over the
sensors. The response strength of each sensor, proportional to
the indentation level, ranges between 0 and 189 femtoFarads
(fF). The acquisition frequency of the capacitive sensor is
20 Hz. During the Braille reading experiments, the touch
sensor outputs varied between 0 and 60 fF, and its receptive
fields extended up to a 1.6 mm radius (depending on the
stimulation pattern).

We developed a simulator reproducing the responses of
the artificial fingertip and offering a greater flexibility in
data generation and experimental protocols [9]. We modelled
the touch sensor responses by means of Gaussian kernels
of amplitude 55 fF and standard deviation 1.6 mm. Ad-
ditionally, we added a white noise to the amplitude and
standard deviation of the response (2.5 fF and 0.1 mm
respectively) and we modelled possible position errors due
to the experimental setup by adding a Gaussian noise to the
position of each stimulus (sd = 0.1 mm).

B. Primary afferent coding: analogue-to-spike transduction

We implement a network of LIF neurones [10], [7] to con-
vert analogue touch sensor outputs into spike train patterns
(Fig. 1D). We map the capacitance values provided by
the touch sensors into current intensities I(t) driving the
LIF neurones by applying a multiplicative gain factor of
−390 pA/fF (determined by comparing output LIF spike
trains against recorded mechanoreceptor responses [11]).
The dynamics of the membrane potential V (t) of each LIF
neurone is:

C · dV (t)
dt

=−g · (V (t)−Vleak)− I(t) (1)

where C = 0.5 nF denotes the membrane capacitance, g = 25
nS the passive conductance, Vleak = −70 mV the resting
membrane potential, and I(t) the total synaptic input of a
neurone. The membrane time constant is then τ =C/g = 20
ms. Whenever the membrane potential V (t) reaches the
threshold Vthr = −50 mV the LIF neurone emits an action
potential. Then, its membrane potential is reset to Vreset =
−100 mV and the dynamics of V (t) are frozen during a
refractory period ∆tre f = 2ms. We also use a “threshold
fatigue” [7] to model the phenomenon of “habituation”. It
consists in increasing the threshold Vthr by a value Athr each
time the neurone discharges, making it harder for the neurone
to spike again (i.e. preventing it from responding in a highly
tonic manner even in the presence of strong inputs). In the
absence of spikes, the threshold decreases exponentially back
to its resting value VrestT hr:

dVthr(t)
dt

=−Vthr(t)−VrestT hr

τthr
(2)

with τthr = 100 ms, VrestT hr =−50 mV and Athr = 50 mV.
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C. Second-order processing in the cuneate network

We model single cuneate responses by means of the pre-
viously presented SRM model [6], [12] able to capture the
stochastic nature of the CN cells (unpublished data by H.
Jörntell). For the implementation, we adopted a previously
presented computational framework [13]. We include a noise
model (i.e. escape noise) that follows a stochastic process,
so providing a linear probabilistic neuronal model.

An input spike arrival at time t induces a membrane
potential depolarisation ∆V (t) described by:

∆V (t) ∝
√

t exp(−t/τ) (3)

where the parameter τ = 2 ms determines the decay time
constant of the EPSP (excitatory postsynaptic potential). If
several afferent spikes excite the neurone within a short time
window, then the EPSPs sum up linearly:

V (t) =Vr +∑
i, j

wi ∆V (t− t̂ j
i ) (4)

where i denotes presynaptic neurones, j indexes the spikes
emitted by a presynaptic neurone i at times t̂ j

i , and Vr =
−70 mV is the resting potential. The term wi indicates the
synaptic weight of the projection from the presynaptic unit
i, defined as:

wi =W ·w0,1
i (5)

with factor W determining the upper bound of the synaptic
efficacy, and w0,1

i being constrained within the range [0,1].
We use W = 0.04 in our simulations. At each time step, a
function g(t) computes the instantaneous firing rate of the
cell according to:

g(t) = r0 log
(

1+ exp
(V (t)−V0

Vf

))
(6)

where the constants r0 = 11 Hz, V0 =−65 mV, Vf = 0.1 mV
are the instantaneous firing rate, the probabilistic threshold
potential, and a gain factor, respectively. A function A(t)
determines the refractoriness property of the neurone:

A(t) =
(t− t̂− τabs)

2

τ2
rel +(t− t̂− τabs)2 H (t− t̂− τabs) (7)

where τabs = 3 ms and τrel = 9 ms denote the absolute and
relative refractory periods, respectively, t̂ the time of the last
spike emitted, and H the Heaviside function. Finally, the
functions g(t) and A(t) allow the probability of firing p(t)
to be computed:

p(t) = 1− exp
(
−g(t)A(t)

)
(8)

We implement the synaptic connections between
mechanoreceptors and CN neurones so as to generate the
receptive fields shown in Fig. 1D. Each CN neurone receives
non-plastic inputs from either one or a group of two/three
adjacent mechanoreceptors depending on the stimulus (see
the caption of Fig. 1 for details). The dimension and shape
of the receptive fields and the synaptic weight distribution of
the mechanoreceptor-to-CN projections allow topographical
information to be maintained at the level of the second

order output space. Also, thanks to the adopted connectivity
layout, CN neurones collecting signals from large receptive
fields mirror both single primary neurone activation and
multiple co-activations, thereby enriching the population
spiking dynamics.

D. Assessing neurotransmission reliability: metrical infor-
mation analysis

To decode neural activities and quantify fine touch discrim-
ination, we applied the recently defined metrical mutual
information I∗(R;S) [14]. Unlike Shannon’s traditional def-
inition of mutual information [15], [16], this measure takes
into account the metrical properties of the spike train space
[17], [18], [19] and it has been proven to be suitable to
decode the responses of human mechanoreceptors obtained
via microneurography recordings [12], [14]. The definition of
I∗(R;S) relies on a similarity function based on the distance
between spike train responses elicited by the same stimulus
and by different stimuli. The Victor and Purpura Distance
was used in the definition of the metrical information [17].
This specific spike train metrics makes it possible to mod-
ulate –through a cost parameter– the importance given to
temporal (and rate) coding in the mapping of the spike train
space.

The perfect discrimination condition corresponds to max-
imum I∗(R;S) and zero conditional entropy H∗(R|S) [14].
It occurs when the size of the largest cluster of responses
becomes smaller than the smallest distance between all
clusters of responses [14].

E. Online classification of Braille characters: Naive
Bayesian Classifier

In order to discriminate Braille characters during the read-
ing task, we trained a Naive Bayesian Classifier (NBC) via
multinomial distributions. This learning algorithm belongs to
the family of probabilistic classifiers relying on Bayes’ rule
to compute the posterior probability of the sample classes.
Despite its simplicity, the NBC has been proven to be fast
and efficient even when the feature independence hypothesis
underlying its application is not fulfilled [20], [21].

Braille characters (i.e. dataset classes) are defined from the
spike train activity encoded after the touch sensor signals.
With the aim of performing a fast classification, we built the
training dataset by binning the activity of the 49 CN neurones
with temporal windows of increasing lengths (see Fig. 3A
for an example). The bin size increment was fixed at 10
ms. Each temporal bin is characterised by the spatiotemporal
organisation of the firing activity it encloses and it can be
labelled with the corresponding character. The arrays of
49 spike counts for each temporal bin (features) and their
corresponding characters (classes) form the complete dataset.

F. From classification to reading velocity control: Kurtosis-
based assessment of the likelihood distribution

Given the procedure adopted to build the activity dataset
and the small time bin chosen as temporal increment, char-
acters’ probability distributions can be measured frequently
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while reading. We use such information to compute the
excess Kurtosis index which indicates to what extent a
probability distribution is peaked around its values. We
investigate whether the variation of the Kurtosis can be
used to modulate the finger scanning velocity in order to
effectively decrease classification time with respect to a
constant speed movement.

III. RESULTS

A. Characterisation of mechanoreceptor responses

A previous study has compared some characteristics of the
simulated and human mechanoreceptor responses to fingertip
skin indentation caused by Braille-character probes [3]. The
simulated primary afferent responses exhibit receptive fields
qualitatively similar to those of real Slow Adaptive I (SA-I)
mechanoreceptors, in terms of shape, dimensions and signal-
to-noise ratio (see Fig. 2A). SA-I units, along with –to a
slightly lesser extent– Fast Adaptive type I (FA-I) primary
afferents, show a topological mapping (i.e. their activity
correlates with the area of stimulation), demonstrating their
role in encoding spatial discontinuities [5]. There is no clear
experimental evidence on whether SA-I or FA-I mechanore-
ceptors primarily carry the information needed for Braille
character recognition [22].

A comparison between the first spike jitter distributions
of the model primary responses and that of their biologi-
cal counterparts (SA-I units) show them to be statistically
equivalent (Mann-Whitney U test P > 0.11; Kolmogorov-
Smirnov test P > 0.076) in terms of both median and shape,
despite a time lag in the simulated responses of about 2
ms (see Fig. 2B), given to the adopted sensor simulation
frequency. Thus, modelled mechanoreceptors present the
same variability in spike latencies as SA-I afferents, but on
a larger time scale. The comparison of inter-spike intervals
(ISI) distributions, however, reveals that the spike trains of
model neurones lack the ISI variability of those recorded
in humans, although a Mann-Whitney U test shows that
both distribution medians are equivalent, P > 0.16 (data not
shown). The difference in ISI variability may be due to the
viscoelastic properties and more complex dynamics of the
human skin compared to the artificial finger.

B. Information content of afferent responses

We perform an information theoretical analysis to decode
simulated first and second order responses to 26 distinct
Braille characters sensed during a scanning task. We focus
on the evolution of information over time and quantify how
rapidly perfect discrimination of all Braille stimuli can be
achieved after stimulus onset.

Fig. 2C top illustrates the evolution of the metrical infor-
mation and conditional entropy upon indentation by Braille
stimuli while scanning at 30 mm/s. The cost in the Victor and
Purpura Distance was chosen as the parameter value allowing
the earliest possible perfect discrimination. At the first order
afferent level, first spikes occur at around 100 ms, and 250 ms
later the condition for an errorless stimulus reconstruction is
satisfied. In comparison, a small delay is observed at the CN
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Fig. 2. Characterisation of mechanoreceptor responses and theoretical
information analysis of primary and secondary afferent responses to Braille
stimuli. (A) Spatial event plots of human SA-I mechanoreceptor responses to
scanned Braille characters ’e’, ’n’ and ’r’ compared to that of their simulated
counterparts (recorded sections adapted from [22]). (B) Distribution of
standard deviations (SD) of first-spike latencies for both SA-I (left) and
simulated (right) mechanoreceptor responses to comparable stimuli. (C)
Top: Time course of metrical information (full line) and conditional entropy
(dashed line) at the output of the LIF neurones (left) and of the CN model
(right), as the fingertip travels over the Braille characters at 30 mm/s. The
26 Braille characters serve as stimuli, with 20 repetitions per stimulus
used. First spikes occure at around 100 ms, and the perfect discrimination
condition is reached about 250 ms later. Bottom: information variability,
measured as mean standard error, over time.

output level, and almost perfect discrimination is possible
just as soon. As expected, the metrical information curve
exhibits a plateau starting at around 200 ms and lasting a
little over 75 ms. This corresponds to the stimulation phase
during which the first column of Braille dots enters in contact
with the fingertip while the second does not stimulate any
sensor yet. The information value at plateau is about half of
the total amount of information transmitted (Fig. 2C).
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Fig. 3. Naive Bayesian classifier output likelihood distributions. (A) CN
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(B) Probabilities for responses to a Braille stimulus (rows of matrix) of being
classified as those of a given stimulus (columns of matrix), as determined
by the probabilistic classifier. The responses to each character is binned
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to be wrongly recognized. (C) Expanded sections of panel B for letters
’r’ and ’e’. Initially, different characters seem to be equally probable. As
time increases, bin size increases and the probability distribution converges
around one character, which characterises the unique likely stimulus.

C. Classification of Braille characters in a reading task
We collect a dataset of character samples and fit a prob-
abilistic classifier to estimate the occurrence probability of

the entire set of Braille characters while reading. When the
NBC fitting parameters are used for offline classification,
a near perfect discrimination is possible. In fact, as one
can observe in Fig. 3B, diagonal values of the classification
confusion matrix are close to one. At the same time, given
to the binning procedure adopted, data samples built by
gathering the spiking activity in small temporal windows
(cf. II-E) do not carry enough information to allow a correct
discrimination. A clear example of the probability evolution
distributions over time is given in Fig. 3C. At the beginning
of the scanning movement, the spiking activity of the CN
neurones responding to letter ‘r’ ( 3C, top) does not allow
to distinguish between ‘r’ and the other Braille characters
with a similar spatial dot configuration (i.e., ‘l’, ‘p’, ‘q’,
‘v’. See Fig. 1C). But, as time evolves, the uncertainty
decreases till a correct classification is possible (maximal
probability reached for letter ‘r’). A similar example can be
observed in Fig. 3C, bottom (letter ‘e’ scanning). We tested
the system with online simulations by brushing the fingertip
over the characters at the constant scanning velocity of 30
mm/s. In this scenario, the classifier correctly discriminated
89% of the scanned characters (10% false positives, 1% no
classification).

D. Online reading velocity modulation

The methodology we adopted for building the spiking-
activity based dataset, lends itself to a frequent computa-
tion of Braille character probability distributions. We asked
whether the probabilities evolution over time could be seen
as a possible mechanism underlying the changes in reading
speed observed in blind subjects [23].

We observed that, when the Kurtosis index gradient (nor-
malized by a constant factor) is applied to modulate the
reading velocity at each time step, the result is an overall
improvement in the reading performance. In fact, at the end
of a single character scanning, the average velocity adopted
with an active speed modulation, is higher than the velocity
the finger had when it first encountered the character (and
that would have been maintained if no changes had been
applied). An example of kurtosis gradient and dynamically
modulated velocity is given in Fig. 4.

IV. DISCUSSION

Dynamic haptic discrimination in humans involves sev-
eral processes at different levels of abstraction (e.g. en-
coding/decoding of afferent signals, sensorimotor control,
decision making).

In this study, we investigate active sensing by integrating
tactile information coding at the neuronal level with a proba-
bilistic framework for dynamic tactile stimuli discrimination.
In a Braille reading task implementation, we convert the
analogue signals from an artificial fingertip into spiking
activity and we apply an information theoretical analysis
to the first and second stage afferent output. We finally
interpret online the output of the second order Cuneate
Nucleus neurones through a Naive Bayesian Classifier and
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Fig. 4. Kurtosis of probability distribution and resulting speed modulation.
(A) Evolution of the kurtosis of the posterior probabilities distributions
computed by the naive Bayesian classifier while scanning the letter B. (B)
Time course of the velocity modulation as a function of time.

ask whether the character probability distribution can be used
for determining an efficient reading velocity.

We show that signals at the earliest stages of the haptic
ascending pathway are conveyed as to allow a complete and
fast discrimination of inputs by downstream decoders. We
demonstrate that a probabilistic approach allows to efficiently
discriminate all Braille characters in an online Braille reading
task and we finally argue that the level of uncertainty of the
reader about the character being read, could determine an
optimal reading velocity.

We are currently investigating how the interferences cre-
ated by different scanning velocities on the activity of CN
neurones influence the classification process. We are also
testing the speed modulation paradigm by closing the loop
and allowing an online control of the fingertip scanning
velocity. So doing, we will be able to observe whether an
increase in the mean reading velocity is present and how
the classification performances are affected by a dynamical
variation in velocity. We finally propose to investigate if the
speed modulation can help improve discrimination perfor-
mance in the case of noisy fingertip movements.
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