
R

T
T

E
P
M
a

z
n
b

N
c

S
d

G

A
t
y
l
r
o
t
s
q
I
a
t
t
c
m
t
w
n
a
w
I

K
n

A

S

*
E
A
l
b

Neuroscience 162 (2009) 805–815

0
d

EVIEW

IMING IN THE CEREBELLUM: OSCILLATIONS AND RESONANCE IN
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bstract—The brain generates many rhythmic activities, and
he olivo-cerebellar system is not an exception. In recent
ears, the cerebellum has revealed activities ranging from

ow frequency to very high-frequency oscillations. These
hythms depend on the brain functional state and are typical
f certain circuit sections or specific neurons. Interestingly,
he granular layer, which gates sensorimotor and cognitive
ignals to the cerebellar cortex, can also sustain low fre-
uency (7–25 Hz) and perhaps higher-frequency oscillations.

n this review we have considered (i) how these oscillations
re generated in the granular layer network depending on in-
rinsic electroresponsiveness and circuit connections, (ii) how
hese oscillations are correlated with those in other cerebellar
ircuit sections, and (iii) how the oscillating cerebellum com-
unicates with extracerebellar structures. It is suggested that

he granular layer can generate oscillations that integrate well
ith those generated in the inferior olive, in deep-cerebellar
uclei and in Purkinje cells. These rhythms, in turn, might play
role in cognition and memory consolidation by interacting
ith the mechanisms of long-term synaptic plasticity. © 2009

BRO. Published by Elsevier Ltd. All rights reserved.

ey words: cerebellum, granular layer, oscillations, reso-
ance, granule cells, Golgi cells.
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he olivo-cerebellar system processes sensorimotor sig-
als to rapidly control fine movement coordination and to
tore memories of past procedures (Eccles et al., 1967; Ito,
984). Moreover, a role of the cerebellum in cognitive
unctions has been reported by several groups (Schmah-
ann, 2004; Leiner et al., 1993; Sacchetti et al., 2004; Ito,
993; Schmahmann and Caplan, 2006; Allen et al., 2004).
he cerebellum has a regular anatomical matrix structure
Fig. 1), which inspired the first comprehensive models of
erebellar functions such as the motor learning theory
Marr, 1969; Albus, 1971; Fujita, 1982). The concepts of
hese theories still provide classic references, but at the
ime they were based on relatively limited knowledge of the
unctional properties of neurons and synapses involved. It
as not until the potential roles of the Golgi cells were
onsidered in detail that the granular layer was proposed
o process input temporal patterns (Fujita, 1982; Chapeau-
londeau and Chauvet, 1991) and generate internal oscil-

atory dynamics (Maex and De Schutter, 1998; Medina and
auk, 2000).

In recent years, important achievements were made on
ellular and synaptic properties of the olivo-cerebellar cir-
uit. The key elements that turned out to be relevant for
odels on cerebellar processing include the precise time
atterns of spikes in the various neurons and the distribu-
ion of long-lasting synaptic plasticity inside the network
Hansel et al., 2001; De Zeeuw and Yeo, 2005). These
lements are functionally related throughout the entire cir-
uit and they influence one another without almost any
xception (Casado et al., 2002; Coesmans et al., 2004;
ieus et al., 2006; Jörntell and Hansel, 2006; Steuber et
l., 2007). More recent works attempt to address the issue
s to how the network properties of the cerebellar system
rocesses precisely the sequences of the timed signals
nd how it enforces the required internal dynamics
D’Angelo, 2008; Jacobson et al., 2008; De Zeeuw et al.,
008; D’Angelo and De Zeeuw, 2009). One of the intrigu-
ng properties in this respect is the capability of the olivo-
s reserved.

mailto:dangelo@unipv.it
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erebellar network to show oscillatory activities. Question
emains which network factors cause the cerebellum to
enerate particular internal rhythms and to operate at pref-
rential frequency bands, and what the functions of these
scillations might be (Buzsáki, 2006; De Zeeuw et al.,
008).

Although the EEG of the cerebellum is not used in daily
linical practice, experimental analysis has revealed that
he cerebellum, in humans, can express all series of
hythms encompassing the theta, alpha, beta, gamma and
ery high frequency (VHF) bands (Dalal et al., 2008; Gross
t al., 2002). These rhythms are likely to arise to a large
xtent from electric fields generated in the molecular layer
Isope et al., 2002; Cheron et al., 2008; de Solages et al.,
008; Middleton et al., 2008), but the granular layer is likely
o contribute as well to at least some of these rhythms (for
eview see De Zeeuw et al., 2008). Extracellular field re-
ordings in freely behaving animals have shown that large
ranular layer areas can oscillate in synchrony demon-
trating remarkable coherence in the 7–25 Hz frequency
ange (Pellerin and Lamarre, 1997; Hartmann and Bower,

ig. 1. The organization of a cerebellar module. This schematic dra
erebellar module is made of a series of connections, in which differen
fferent fiber set. The mossy fibers contact granule cells (GrC) and DC
ells (PC). Moreover, the IO cells emit climbing fibers that contact DCN
an be divided in three sections illustrated schematically in the insets.
f the vestibulocerebellum. Note that connections exist between th
onsidered as separated.
998; Courtemanche et al., 2002; Courtemanche and t
amarre, 2005; Schnitzler, 2005; Schnitzler and Gross,
006). In keeping with this, granular layer neurons are well
quipped with appropriate membrane channels favoring
ctivity in this band (D’Angelo et al., 2001; Solinas et al.,
007a,b). Moreover, computational modeling has pre-
icted that the granular layer can generate theta-frequency
scillations (Kistler and De Zeeuw, 2003) and may also
ndergo cycles of activity at relatively higher frequencies
up to 40 Hz; Maex and De Schutter, 1998).

Interestingly, all these frequencies have been ob-
erved in muscular responses either as tremor or through
MG spectral analysis and are somehow species-specific.
or example, eyelid oscillates at �10 Hz in humans, �20
z in cats and 25–30 Hz in rats, guinea pigs (Gruart et al.,
000) and mice (Koekkoek et al., 2002). Therefore, the
erebellum may be able to sustain oscillations at different
requencies to synchronize with other areas of the brain
nvolved in sensorimotor control (Domingo et al., 1997;
ruart et al., 1997; Sanchez-Campusano et al., 2007).

While we recently focused on the interplay between
iming and plasticity in shaping the granular layer response

ws the most relevant connections within a cerebellar module. The
lements communicate in closed loops and are contacted by the same
hich, in turn, receive inhibition from the same common set of Purkinje
which also project to the same DCN cells. For convenience, the circuit
ight inset also shows a Lugaro cell (LC) and a UBC, this latter typical
g fiber and mossy fiber sections, although these have often been
wing sho
t circuit e
N cells w
and PC,
The top-r
o external inputs (D’Angelo and Dezeeuw, 2009), here we
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ill consider the cellular and functional properties of the
ranular layer and their implications for oscillations and
esonance in the olivo-cerebellar system as a whole. Given
he difficulties in classifying and comparing brain oscilla-
ions across brain regions, species or behaviors (Buzsáki,
006), in this review we will refer to low-frequency oscilla-

ions when considering those between 7 and 25-30 Hz and
o high-frequency oscillations when considering those oc-
urring above 30 Hz.

ANATOMO-FUNCTIONAL PROPERTIES OF THE
OLIVO-CEREBELLAR CIRCUIT

he cerebellum is organized in modules including cortical
icrocomplexes (De Zeeuw et al., 1994; Brown and
ower, 2001; Voogd et al., 2003; Pijpers et al., 2006). The
nderstanding of circuit mechanisms can be conceived by
ddressing the connectivities within an individual module
nd the relation between the various modules (Fig. 1).
ach module receives two major kinds of inputs, one from

he mossy fibers and another from the climbing fibers.
hese inputs ultimately converge onto Purkinje cells,
hich eventually inhibit the deep cerebellar nuclei, repre-
enting the sole output of the circuit. Virtually all connec-
ivities among neurons and interneurons in the cerebellar
ortex occur within individual modules. The intracortical
onnections between modules occur prominently via the
arallel fibers, apart from the Lugaro cell axons running
long the parallel fibers and contacting different inhibitory
eurons (including Purkinje cells, Golgi cells and stellate
ells; Lainé and Axelrad, 1998; Dieudonné and Damoulin,
000; Dean et al., 2003). Moreover, at the cerebellar input,
ommon mossy fibers can activate more lobules and a
ingle olivary neuron also usually reaches different mod-
les even at a considerable distance (for review see De
eeuw et al., 1998; Voogd et al., 2003). Here for clarity of
resentation, we dissect the olivo-cerebellar system into
hree principal sub-circuits and we discuss their relation-
hip accordingly.

he mossy fiber input and the granular layer

he mossy fibers provide one of the major inputs to the
erebellum and mediate sensorimotor and higher cognitive
nputs via dedicated pathways running through the spinal
ord, brainstem and cerebral cortex (Ito, 1984). The prop-
rties of the mossy fiber firing pattern appear to depend on
he specific characteristics of the particular input source
nd the actual stimulus status. For example, during slow
ead rotations, the vestibular input is represented through
linear encoding of mossy fiber spike rates, typically in the
–40 Hz range (Arenz et al., 2008; Bagnall et al., 2008);

he trigeminal input tends to generate spike bursts in re-
ponse to transient stimuli causing corresponding bursts in
ranule cells (Chadderton et al., 2004; Rancz et al., 2007);
nd the oculomotor eyeball input as well as joint input
ppears to produce both bursts and tonic discharges re-

ated to changes in position (van Kan et al., 1994; Kase
t al., 1980). Since many of the sensory systems nuclei,

ontine nuclei and cortical efferents also include neurons T
apable of both phasic and tonic discharge (e.g. see Ghez,
991; Schwarz and Thier, 1999; Möck et al., 2006), the
ombined capacity is probably rather common in mossy
ber signaling, even though some spiking patterns may
nly become apparent during a particular status of the
timulus.

Signals coming into the cerebellum through the mossy
bers are processed in the granular layer network, which

ncludes a feed-forward inhibitory loop (mossy fiber¡Golgi
ell¡granule cell) and a feedback inhibitory loop (mossy
ber¡granule cell¡Golgi cell¡granule cell). Here, with
he intervention of the inhibitory circuits and synaptic plas-
icity, mossy fiber spikes are recoded into new spatiotem-
orally organized sequences by granule cells and Golgi
ells exploiting their specific electroresponsive properties,
hich are specialized for sustaining bursting and repetitive
ctivity on specific frequency bands (D’Angelo et al., 2001;
apelli and D’Angelo, 2007; D’Angelo, 2008; Solinas et
l., 2007a,b) (Fig. 2). Four relevant aspects of this pro-
essing are:

. Granular layer processing is fast and precise; output
spikes are emitted within milliseconds exploiting fast
synaptic and excitable mechanisms (Silver et al., 1992;
D’Angelo et al., 1995; Cathala et al., 2005).

. Specific input patterns, under the guidance of inhibitory
circuits, can induce bidirectional NMDA receptor-de-
pendent long-term synaptic plasticity at the mossy fi-
ber–granule cell synapse (D’Angelo et al., 1999; Ar-
mano et al., 2000; Rossi et al., 2002; Maffei et al.,
2002; Sola et al., 2004; Gall et al., 2005; Mapelli and
D’Angelo, 2007). Long-term potentiation (LTP) and
probably also long-term depression (LTD) are ex-
pressed presynaptically (Sola et al., 2004; D’Errico,
Prestori and D’Angelo, unpublished observations), and
as such they may have a prominent impact on timing
through their control of repetitive neurotransmitter
dynamics, i.e. short-term facilitation and depression
(Nieus et al., 2006).

. By controlling first spike delay, LTP would allow spikes
to fall inside the window set by Golgi cells feed-forward
inhibition, while LTD would drive the granule cells re-
sponse beyond the window limit (“window-matching”
effect; D’Angelo, 2008; D’Angelo and De Zeeuw,
2009). By doing so, the granular layer operates a spa-
tiotemporal filtering of signals and a spatiotemporal
redistribution of activity, which can eventually lead to
computational operations involving coincidence detec-
tion and pattern separation (Mapelli J, Gandolfi D and
D’Angelo E, unpublished observations).

. The granule cells are resonant and the Golgi cells are
pacemaking and resonant at low frequency (�10 Hz in
vitro, but probably higher in vivo; Vos et al., 1999;
D’Angelo et al., 2001; Solinas et al., 2007a,b). The
granular layer can be entrained in repetitive synchro-
nous discharges in the 7–25 Hz range (Pellerin and
Lamarre, 1997; Hartmann and Bower, 1998; Courte-
manche et al., 2002; Courtemanche and Gross, 2005).
hus together, these four elementary aspects of granular
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ayer processing show that this layer is in principle well
quipped to control the absolute timing and phase of os-
illations and resonance (Fig. 2). This control is of funda-
ental importance since every subsequent computation in

he cerebellum will depend on it. Granule cell spike pat-
erns are further processed in Purkinje cells, induce long-
erm synaptic plasticity at the parallel fiber–Purkinje cell
ynapse and activate molecular layer interneurons.

he climbing fiber input, Purkinje cells and the
olecular layer

second major input to the cerebellar cortex comes from
he inferior olive through the climbing fiber system. The
nferior olive itself receives inputs from many brain regions
hat form, in fact, directly or indirectly a source for one of
he mossy fiber inputs (for review see De Zeeuw et al.,
998). The olivary neurons have a propensity to oscillate
Llinás and Yarom, 1981; Chorev et al., 2007; Khosrovani
t al., 2007; Van Der Giessen et al., 2008), and their
limbing fiber activities can produce theta-frequency pat-
erns in the cerebellar cortex by directly innervating the
endritic arbors of Purkinje cells and inhibitory interneu-

ig. 2. The cellular basis for low-frequency oscillations and resonance
re endowed with ionic currents that allow the emergence of theta-freq
requency range, and Golgi cells show enhanced responses and prec
nd phase reset with the corresponding characteristic period. This circ
or example, the mossy fiber input would occur in theta-burst patterns
l. (2006) and Solinas et al. (2007b).
ons, including stellate cells (Barmack and Yakhnitsa,
008) and possibly Golgi cells (Xu and Edgley, 2008). In
act, in Purkinje cells, climbing fiber activities are able to
xert a very powerful phasic excitation through the com-
lex spike (Miall et al., 1998). The complex spike signal
ay carry an error in motor performance and as such it
ight be used as an instruction for generating synaptic
lasticity at the parallel fiber to Purkinje cell synapse (Ito
nd Kano, 1982; Coesmans et al., 2004). Moreover, climb-

ng fibers can exert a tonic inhibitory action (Montarolo et
l., 1982), which has been assumed to be due to collater-
ls to interneurons. Recently, Szapiro and Barbour (2007)
ave provided a mechanistic explanation to this observa-
ion by demonstrating that interneurons are affected by
lutamate spillover from the climbing fibers.

The Purkinje cells have their own processing mecha-
isms, which also rely on intrinsic electroresponsive prop-
rties and synaptic plasticity. Their most relevant compu-
ational aspects are:

. Purkinje cells are spontaneously active (30–50 Hz)
and their discharge is modulated by inputs from the
olivary neurons, granule cells, and molecular layer in-

rebellar granular layer. The granule cell (GrC) and the Golgi cell (GoC)
sonance. Granule cell intrinsic excitability is enhanced in the 4–10 Hz
he same frequencies. Moreover, Golgi cells show pacemaker activity
efore appropriately designed to generate enhanced responses when,
ental traces have been redrawn from D’Angelo et al. (2001); Forti et
in the ce
uency re
ision at t
uit is ther
terneurons. Following the original observations by Ad-
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rian and Matthews (1934), it was recently shown that
the molecular layer can sustain synchronous high-fre-
quency (100–200 Hz) oscillations entraining the Pur-
kinje cells (de Solages et al., 2008; Middleton et al.,
2008). Thus, the granular layer patterns need to be
precisely synchronized in order to efficiently affect Pur-
kinje cells activity.

. Purkinje cell synapses are sites of plasticity, including for
example LTD and LTP at the parallel fiber to Purkinje cell
synapse (Coesmans et al., 2004), LTD at the climbing
fiber to Purkinje cell synapse (Hansel et al., 2001), and
LTP at the interneuron to Purkinje cell synapse (Kano,
1995). For alternative interpretations see Llinas et al.
(1997).

. Purkinje cells may act as perceptrons exploiting their
plasticity capabilities for pattern recognition (Brunel et
al., 2004).

. Purkinje cells may communicate through spike pauses
modulating the interspike intervals over milliseconds
(Steuber et al., 2007; Hoebeek et al., 2005; Shin et al.,
2007). In this respect, it is relevant to note that under
particular forms of anesthesia, but less so in the awake
state, Purkinje cells show extensive bistable up-and-
down states lasting over much longer time periods of
hundreds of milliseconds to seconds (Loewenstein et
al., 2005; Schonewille et al., 2006; Jacobson et al.,
2008).

hus, apart from a direct inhibitory feed-forward control
mposed by the molecular layer interneurons (stellate and
asket cells), the dynamic firing properties of the Purkinje
ells are presumably tightly controlled by both the climbing
ber and the parallel fiber system, which have probably
mpact on all four aspects described above.

he deep-cerebellar neurons and the cerebellum
utput stage

he Purkinje cells form the only output of the cerebellar
ortex and they inhibit the cells of the vestibular nuclei (VN)
nd deep-cerebellar nuclei (DCN), which ultimately con-
ert the activities of the microzones and those of the mossy
ber and climbing fiber collaterals into the final cerebellar
utput (Fig. 1). The VN and DCN are thus at a key location
ithin the cerebellar network. Their projection neurons can
e divided into at least two main groups: those that inhibit
he inferior olivary (IO) cells presumably regulating their
oupling and oscillations (De Zeeuw et al., 1989, 1998;
acobson et al., 2008) and those that exert a more direct
ontrol on the ultimate motor output (Fig. 3). In fact, while
he role of inhibitory interneurons has not been demon-
trated convincingly in freely behaving animals yet, princi-
al neurons can be divided into types A and B, which
odulate their firing in relation to activation of agonist or
ntagonist muscles (Gruart et al., 2000; van Kan et al.,
993). The most relevant properties of the DCN neurons
re the following:

. DCN neurons are intrinsically active at frequencies
ranging from a few Hz to tens of Hz (Uusisaari et al.,

2007). In general, the intrinsic dynamics of the cells o
generate silent pauses and often rebound excitation,
producing alternating phases of activity depending on
the strength and length of the inhibition induced by the
Purkinje cells (Uusisaari et al., 2007). The projecting
GABAergic and non-GABAergic DCN cells can be dis-
tinguished based on their synaptic currents; the syn-
aptic currents in the GABAergic cells have lower am-
plitude, lower frequency and slower kinetics than those
of the non-GABAergic cells (Uusisaari and Knöpfel,
2008). Therefore, the GABAergic cells appear better
designed for conveying phasic spike rate information,
whereas the larger non-GABAergic cells relay more
faithfully tonic spike rate.

. The DCN and VN neurons may act as one of the main
substrates of downstream motor memory storage (Lis-
berger and Sejnowski, 1992; Wada et al., 2007; Ito,
2006). This hypothesis is supported by the fact that the
synaptic strength of their inputs as well as their active
membrane properties can be readily modified (Tel-
gkamp and Raman, 2002; Aizenman et al., 1998;
Aizenman and Linden, 2000). Interestingly, as pre-
dicted by a recent model of the cerebellar nuclei neu-
rons and their Purkinje cell and mossy fiber collateral
inputs (De Zeeuw et al., 2008), Pugh and Raman
(2008) showed that the extent of plasticity varies with
the relative timing of synaptic excitation evoked by the
mossy fiber collaterals and the hyperpolarization in-
duced by the Purkinje cells activity.

hus, one can hypothesize that the synchronous oscillations
n the Purkinje cell activities together with plasticity at the

ossy fiber–DCN and the Purkinje cell–DCN synapses form
he main mechanistic tools to control the activity in the DCN

ig. 3. Multiple loops involved in controlling cerebellar low-frequency
ctivity. Due to the intrinsic resonance of neurons in the granular layer

oop (GC–GoC), to signal reentry from the DCN, and to oscillatory
ctivity in the IO complex, the olivo-cerebellar circuit demonstrates a
esign suitable to operate within a dominant frequency band of �10
z. GrC, GoC, PC, mf and cf. indicate granule cells, Golgi cells,
urkinje cells, mossy fibers and climbing fibers, respectively. While the
ackbone of the circuit summarizes classic knowledge on the cerebel-

um (e.g. see Eccles et al., 1967), some less known connections like
hose from climbing fibers to the SC and GoC (Shibata et al., 1998;
armack and Yakhnitsa, 2008) and from the DCN to GrC (Buisseret-
elmas and Angaut, 1989; Trott et al., 1998) may also play an impor-

ant role for the overall network synchronization and phase-locking.
utput neurons, and that different sets of neurons in the DCN
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re sensitive for oscillations at different frequency ranges (for
etails about hypothesis see De Zeeuw et al., 2008).

There are, in addition, several connections between
hese three main subcircuits. Activity of the inferior olive
an be conveyed through the climbing fiber¡stellate
ell¡Golgi cell circuit (Dumoulin et al., 2001; Szapiro and
arbour, 2007; Barmack and Yaknitza, 2008). Moreover,
olgi cells may also be inhibited directly through metabo-

ropic receptor activation by the climbing fibers, as pro-
osed by Xu and Edgley (2008). Finally, some mossy
bers can originate from the DCN (Trott et al., 1998). Thus,
ctivity of the IO and DCN can be reverberated in the
ranular layer. Interestingly, the interaction between the

wo main subsystem can exert complex effects on spike
ischarge and on synaptic plasticity in Purkinje cells (Miall
t al., 1998; Hansel et al., 2001).

As a whole, one can conclude that all circuit sub-
ections make their own contribution to oscillatory activity
n the cerebellum and eventually interact through several
nternal connection loops. Importantly, the granular layer is
he starting point for the activities generated in several of
he other circuit sections.

SPECIAL PROPERTIES OF GRANULAR
LAYER NEURONS

oth the granule cells and Golgi cells have complex dy-
amic properties, which can influence granular layer tem-
oral patterns. Granule cells, in addition to generating
epetitive nonadapting spike discharge in response to a
ontinuous stimulus (D’Angelo et al., 1995, 1998; Brickley
t al., 1996), can enhance spike burst generation and
esonate in a low-frequency band (between 4 and 10 Hz)
D’Angelo et al., 2001; Magistretti et al., 2006). High-fre-
uency bursting (Chadderton et al., 2004; Jörntell and
ckerot, 2006; Rancz et al., 2007; Barmack and Yakh-
itsa, 2008) as well as collective low-frequency oscillations
Hartmann and Bower, 1998; Pellerin and Lamarre, 1997;
u et al., 2005) characterize indeed granule cell responses

n vivo. Golgi cells show an even more complicated set of
xcitable properties including pacemaking, rebound exci-
ation and burst discharge (Dieudonné, 1998; Forti et al.,
006), whose mechanisms have recently been elucidated
o a considerable extent (Solinas et al., 2007a,b). The
acemaker oscillation usually also occurs at low frequency
between 4 and 10 Hz) and spikes triggered by incoming
ynaptic inputs can reset the phase of such ongoing intrin-
ic oscillations. The response to brief repetitive depolar-
zation generally starts with a doublet or triplet of spikes
nd subsequently resonates at a faster, stronger and more
recise rhythmic activity at the theta-frequency band. Im-
ortantly, most of these properties can be traced in vivo in
hat Golgi cells under these conditions too are spontane-
usly active and show precise temporal response patterns
o punctuate stimulation, which include fast bursts followed
y a silent pause corresponding to phase-reset (Vos et al.,
999; Simpson et al., 2005; Holtzman et al., 2006a,b).

The importance of bursting could be related to the

eed of generating reliable and strong responses to the L
igh-frequency bursts of impulses entering the granular
ayer through the mossy fibers (Vos et al., 1999; Chadder-
on et al., 2004; Jörntell and Eckerot, 2006; Rancz et al.,
007). Bursts are intensified by specific ionic mechanisms

ncluding the resurgent Na current, whose contribution
ecomes particularly efficient when cell excitation is in-
ense (Magistretti et al., 2006; Solinas et al., 2007a). As a
onsequence, the response of those granule cells that are

ntensely activated will be prized with the generation of a
urst, whose duration is limited by a brisk feed-forward

nhibition caused by a similar burst in the Golgi cell. On this
asis one may anticipate that erratic spikes in the mossy
bers will not be efficiently transmitted, so that the burst-
urst mechanism would indeed play a role for secure
ransmission along the mossy fiber pathway (e.g. see
ancz et al., 2007).

The dynamic properties of the granule cells and Golgi
ells described above are reflected in the composition of
heir conductances. While they both contain the sodium,
alcium and potassium currents responsible for repetitive
ring regulation, bursting and resonance, it is only the
olgi cells that express the specific conductances required

or pacemaking, phase resetting and rebound excitation
Table 1). An important consideration is that Golgi cell
hythmic activity at 4–10 Hz can be linearly biased by
njected currents (Dieudonné et al., 1998; Forti et al., 2006;
olinas et al., 2007a,b), so that different frequencies may
e generated under continuous synaptic bombardment.
ndeed, spontaneous activity of Golgi cells in vivo shows a
ange of values from 4 up to 30 Hz (Vos et al., 1999;
oltzman et al., 2006a,b). Despite this variability, however,

esonance would remain unaltered, since it depends on
he specific channels expressed in the membrane rather
han on the bias input current. Therefore, Golgi cells can
rovide a flexible background firing while maintaining a
table resonance frequency.

The granule cell–Golgi cell loops are probably regu-
ated by other neurons including the stellate cells, the IO
ells, Lugaro cells and, in the vestibulocerebellum, the
nipolar brush cells (UBC) (Fig. 1, inset: for further details
ee D’Angelo, 2008; D’Angelo and Dezeeuw, 2009). UBCs
re organized to redistribute and perpetuate excitation.
lthough the investigation of UBC responses to mossy
ber inputs is still incomplete (for the original report see

able 1. Major ionic currents that regulate granule and Golgi cell
xcitability (D’Angelo et al., 2001; Forti et al., 2006; Solinas et al.,
007a,b)

Granule cell Golgi cell

igh-frequency doublets Na-r Na-r
pike delay K-A K-A
esonance Na-pK-slow Na-pK-slow
acemaking Na-p/K-slow/K-AHP/h
hase-reset K-AHP
ebound excitation h/LVA

Abbreviations: Na-p, persistent Na current; Na-r, resurgent Na cur-
ent; K-A, A-current; K-slow, slow (M-like) potassium current; K-AHP,
pamine-sensitive calcium-dependent potassium current; h, h-current;

VA, low-voltage-activated calcium current.



R
e
o
2
h
U
g
b
u
n
r
r
t
(

L

R
(
fi
a
L
u
t
L
p
a
F
t
e
s
m
o
b
a

a
a
t
l
r
g
2
m
1
e
i
t
i
D
e
o
1
C
t
r
fi

B
3
f
s
c
c
s
F
d
b
2
c
B
t
r
t

P
o

I
g
h
g

s
f
o
l
m
“
t
g
s
D
(
t
w
i
g
c
W
r
t
4

c
G
p
b
s
e
G
o

b
c
2
m

E. D’Angelo et al. / Neuroscience 162 (2009) 805–815 811
ossi et al., 1995), UBCs have been shown to generate
ither tonic or burst discharge or even to present intrinsic
scillations depending on resting potential (Diana et al.,
007; Russo et al., 2007) by exploiting the properties of an
-current and a low voltage activated calcium current.
BCs, like granule cells, are inhibited by Golgi cells (Du-
ue et al., 2005) and could be tuned on a low-frequency
and (S. Masetto, P. Perin, L. Bottà, and E. D’Angelo,
npublished observations). Lugaro cells (Fig. 1, inset) are
ormally silent but specifically inhibit Golgi cells upon se-
otoninergic activation, thereby providing a mechanism to
egulate the extent of granular inhibition in relation to in-
ernal states (e.g., attention, arousal, reward) of the CNS
Dieudonné and Dumoulin, 2000; Geurts et al., 2003).

OSCILLATIONS AND RESONANCE IN THE
GRANULAR LAYER

ow-frequency granular layer oscillations

egular synchronous oscillations in the low frequency
7–25 Hz) range were reported over large granular layer
elds in vivo during periods of resting attentiveness in rats
nd monkeys (Hartmann and Bower, 1998; Pellerin and
amarre, 1997). The low-frequency preference of the gran-
lar layer denotes the ability of the granular layer to tune
oward similar patterns conveyed by afferent structures.
ow-frequency oscillations, specifically in the theta band,
ervade sensorimotor processing (Llinás, 1988; Llinás et
l., 1997; Gross et al., 2002; Schnitzler and Gross, 2005).
or instance, whisking in rodents occurs at �10 Hz, so that

he same frequency is probably reverberated into the cer-
bellum both through the sensorimotor cortex and the
ensory afferent pathways as a consequence of move-
ent. A remarkable coherence between low frequency
scillations in sensorimotor cortex and cerebellum has
een indeed observed in the rat and monkey (O’Connor et
l., 2002; Courtemanche et al., 2002).

The theta-band seems predominant in the cerebellum
nd the tendency of neurons in the granular layer to oper-
te in the theta-band does not stand alone (Fig. 3). At least

wo other loops within the same system may operate
argely within the same frequency range. First, the recur-
ent circuitry passing through the DCN may reactivate the
ranular layer in about 100 ms (Kistler and De Zeeuw,
003; see also Porrill and Dean, 2007) (Fig. 3). Since
ossy fibers are also emitted by DCN neurons (Trott et al.,
998), the theta frequency tuning of the granular layer may
volve so as to raise the sensitivity to recurrent DCN

nputs, which presumably represent an efference copy of
he cerebellar motor output. Second, many of the activities
n olivo-cerebellar modules formed by the inferior olive,
CN and Purkinje cells, are dominated by the pace gen-
rated in the neurons of the olive, which also tend to
scillate and fire in the theta-band (Llinás and Yarom,
981; De Zeeuw et al., 1998; Kitazawa and Wolpert, 2005;
horev et al., 2007; Khosrovani et al., 2007). Thus, since

he Golgi cells presumably receive various direct and indi-
ect inputs (either excitatory or inhibitory) from the climbing

bers derived from the olive (see above; Sugihara, 2006; fi
armack and Yakhnitsa, 2008; Xu and Edgley, 2008) (Fig.
), the granular layer may also tune toward the dominant
requencies of the olivo-cerebellar modules. Finally, it
hould be noted that the theta frequency preference of the
erebellar network matches that of certain input patterns
oming from extracerebellar areas, which provide inputs to
ources of both the mossy fiber and climbing fiber system.
or instance, vibrissal activations and movements in ro-
ents occur at about 10 Hz and give rise to projections to
oth the pontine nuclei and inferior olive (Kleinfeld et al.,
006) as well as directly from the trigeminal nucleus to the
erebellum (Bower and Woolston, 1983; Morrissette and
ower, 1996). Taken together, one can conclude that the

heta-band operations in the granule cell layer can be
eadily integrated with those of other cerebellar and ex-
racerebellar theta-band activities.

rediction of high-frequency granular layer
scillations

n addition to elaborate slow 7–25 Hz oscillations, the
ranular layer may be able to generate oscillations at
igher frequency. There are two main circuit loops sug-
esting that this could indeed be the case.

Golgi cell inhibition of granule cells can rapidly arrest
ignal transmission along the mossy fiber pathway. Feed-
orward inhibition (mossy fiber¡Golgi cell¡granule cell)
perates rapidly (Kanichay and Silver, 2008), usually al-

owing the time for just a couple of spikes to cross the
ossy fiber¡granule cell relay. This effect was called

time-windowing” (D’Angelo and De Zeeuw, 2009). The
ime window is typically of about 5 ms and allows the
ranule cells to fire one to two spikes in response to a
ingle mossy fiber stimulus (Mapelli and D’Angelo, 2007).
uring a continuous stimulation, feedback cell inhibition

granule cell¡Golgi cell¡granule cell) can depress signal
ransmission along the mossy fiber¡granule cell pathway
ith a longer delay. Computational modeling predicts that,

n the presence of a continuous input, this mechanism can
ive rise to oscillations, since once granule cells are ex-
ited, they activate the Golgi cell switching excitation off.
hen the inhibitory action is terminated, the cycle can

estart generating oscillation at frequencies depending on
he cell and synaptic time constants of the circuit (around
0 Hz in Maex and DeSchutter, 1998).

Double inhibition from the molecular layer (granule
ell¡stellate cells¡Golgi cell¡granule cell) can reduce
olgi cell activity (Barmack and Yakhnitsa, 2008). Com-
utational modeling suggests that this mechanism could
e important to stabilize high-frequency oscillatory cycles,
ince the excitability of granule cells would be raised after
ach excitation/inhibition cycle favoring re-excitation (J. A.
arrido, E. Ros, R. R. Carrillo, E. D’Angelo, unpublished
bservations).

Unfortunately, the MEG demonstration of the gamma
and oscillations in the human cerebellum could not indi-
ate their layer of origin (Dalal et al., 2008; Gross et al.,
002) and high-frequency granular layer oscillations re-
ain to be demonstrated experimentally (e.g. using local
eld potentials).
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hy are oscillations in the granular
ayer important?

rom this review, it emerges that granular layer oscillations
ay play a critical role in cerebellar activity.

Low-frequency oscillations are fundamental for several
europhysiological processes, including motor control, the
ormation of memories and sleep (for review see Buzsáki,
006). Low-frequency activity was shown to correlate with
hat in the cerebral cortex, and may therefore represent a
uitable band for communication between cerebellum and
he thalamo-cortical system (O’Connor et al., 2002). More-
ver, it may provide a binding element between the two
ain functional sections of the cerebellar cortex, i.e.
ossy fiber and the climbing fiber input systems. The
isruption of appropriate control mechanisms in the olive
nd DCN allows low-frequency oscillations to prevail at the
CN output stage causing muscle tremor, as it occurs with
armaline application and in essential tremor in humans
Llinás, 1988). Muscle tremor occurs at �10 Hz for larger
uscles, and is also species-specific ranging from about 7
z to 25–30 Hz (Gruart et al., 2000; Koekkoek et al.,
002). Therefore, low-frequency patterns may have impor-
ant yet incompletely understood roles in cerebellar con-
rol, opening new fields for future research.

Low-frequency oscillations are essential for signal pro-
essing at high rate (for review see Buzsáki, 2006). Since
he afferent inputs are largely encoded with 5-ms precision
n the 1st spike delay (Johansson and Birznieks, 2004), the
ame accuracy in the time-window matching process
eems needed for efficient elaboration of incoming infor-
ation. The repetition of these time-windows during pro-

racted stimulation is predicted to generate high-frequency
scillations in the granular layer, providing a coherent
ramework for data processing over large granular layer
elds. This periodic output may then be sampled by Pur-
inje cells, which also have a high-frequency regimen of
ctivity and provide precise timing of Purkinje cells simple
pike activity over the same scale (Hoebeek et al., 2005;
hin et al., 2007). The high-frequency sampling based on
scillating background could be important if the Purkinje
ell works as a perceptron, allowing signal sampling over
ery short time windows and improving pattern recognition
Brunel et al., 2004). The repetition of spikes emitted by
ranule cells in the gamma frequency band may also be

mportant to implement other physiological processes.
irst, parallel fiber–Purkinje cell release probability is usu-
lly low (except for ascending axon synapses, Isope and
arbour, 2002; Sims and Hartell, 2006), so that short
igh-frequency bursts can ensure efficient transmission
hrough short-term parallel fiber–Purkinje cell facilitation.
econdly, there are forms of parallel fiber–Purkinje cell
TD which require doublets (Casado et al., 2000, 2002), so
hat persistent changes could be induced only at those
ynapse that receive high-frequency inputs. The demon-
tration of high-frequency oscillations in the granular layer
emains an interesting challenge for future cerebellar in-

estigations.
CONCLUSION

n conclusion, available evidence suggests that both slow
nd fast granular layer oscillations could have specific
oles in cerebellar signal processing. While high-frequency
scillations may support millisecond-scale timing in gran-
lar layer activities preparing signals for Purkinje cells and
llowing fast and precise elaboration of single motor acts,

ow-frequency oscillations may support repetition or coor-
ination of complex motor sequences. Indeed, the granular

ayer demonstrates a theta-frequency preference that is
ndicative of the existence of such higher-order dynamics,
nd anatomical and functional evidence suggests that
hese could involve entire cerebellar modules. This low-
requency activity may be important for coordinating cere-
ellar communication with the sensorimotor cortex corre-

ating with processes like learning, arousal and attention.

ote added in proof

uring publication of this paper, a report has appeared
howing that gap-junctions among Golgi cells play an im-
ortant role for low-frequency oscillations and resonance

n the cerebellum granular layer. (Dugué GP, Brunel N,
akim V, Schwartz E, Chat M, Lévesque M, Courte-
anche R, Léna C, Dieudonné S. (2009) Electrical cou-
ling mediates tunable low-frequency oscillations and res-
nance in the cerebellar Golgi cell network. Neuron 61:
26–139.)
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