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The majority of operations carried out by the brain require learning complex signal patterns for future

recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-

term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly understood.

Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition,

reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When

endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses and at the

inhibitory interneuron–interneuron synapses, the interneurons rapidly learned complex input patterns.

∗Corresponding author.
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Interestingly, induction of plasticity required that the network be entrained into theta-frequency band
oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity effectively
distributed multiple patterns among available interneurons, thus allowing the simultaneous detection
of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system
more robust allowing self-adjustment and rescaling in response to a broad range of input patterns. The
combination of plasticity in lateral inhibitory connections and homeostatic mechanisms in the inhibitory
interneurons optimized mutual information (MI) transfer. The storage of multiple complex patterns in
plastic interneuron networks could be critical for the generation of sparse representations of information
in excitatory neuron populations falling under their control.

Keywords: Spiking neural network; spike-timing dependent plasticity; intrinsic plasticity; lateral inhibi-
tion; oscillations; pattern recognition.

1. Introduction

Brain computation occurs in microcircuits made up
of large numbers of excitatory and inhibitory neurons
and is based on complex spike patterns generated by
neurons and transmitted in the synapses. Synapses
can persistently modify their efficiency in an activity
dependent manner, a phenomenon called long-term
synaptic plasticity, providing the basis for learning
and memory.1 In addition, synapses can also show
weight rescaling mechanisms and neurons long-term
changes in intrinsic excitability, all processes that
may have the homeostatic role of maintaining spike
discharge within certain limits.2,3 In order to cope
with real-time processing in a rapidly changing envi-
ronment, the brain requires suitable neuronal coding
schemes and synaptic plasticity mechanisms allowing
fast and precise spike-time-correlated learning and
pattern recognition. High temporal precision is there-
fore required both for spike timing and, consequently,
for synaptic plasticity. For instance, millisecond-scale
correlations among neurons in the sensorial systems
are thought to improve storage capacity and compu-
tational capabilities4,5 and long-term synaptic plas-
ticity efficiently alters the synaptic weights to detect
known stimuli (visual shapes, haptic sensations, etc.)
in successive neuron layers.6–8

Spike-timing has long been proposed for encoding
information in the brain and spike-timing dependent
plasticity (STDP) to determine the weight changes
required to enhance information processing. Several
forms of STDP have been experimentally observed
in different areas of the brain (see Ref. 9 for an
extensive review). In its classical form, long-term
potentiation (LTP) has been observed when a presy-
naptic neuron fires a spike shortly before the post-
synaptic neuron, whilst long-term depression (LTD)

has been measured in response to a postsynap-
tic spike followed by a presynaptic spike.10–12 This
kind of STDP has proved very efficient in exci-
tatory synapses and several models implemented
with this mechanism have succeeded in detecting
the start of single repeated patterns in continu-
ous spike train stimulation.13,14 These mechanisms
have been complemented with strong lateral inhibi-
tion, allowing multiple nonoverlapping patterns to
be detected in multi-neuronal networks in a winner-
takes-all scheme.15

Inhibitory synapses have also been experimen-
tally shown to express a particular type of symmet-
ric STDP in the hippocampus11,16 and the auditory
cortex.17 In these cases, LTP is induced when presy-
naptic and postsynaptic spikes occur in close time
vicinity, irrespective of the reciprocal order, whilst
LTD is induced when the presynaptic and postsy-
naptic spikes occur further away in time, with dis-
tances ranging from between 40ms and 100ms. The-
oretical studies have recently hypothesized the role of
inhibitory STDP in the interneuron synapses, point-
ing mainly in two directions: (i) balancing excitation
and inhibition in feed-forward inhibitory loops,18,19

and (ii) decorrelating the activity of its correspond-
ing excitatory neuron population and producing
sparse recoding of the sensory signals.20 However,
the influence of additional factors (namely, the spike
triplet interactions, the postsynaptic firing frequency
or the axonal delays)21,22 as well as the role of
inhibitory STDP in brain information processing still
remains unclear.

Since the real world is continuously evolving and
the information flow fluctuates, biological systems
have developed homeostatic mechanisms to coun-
teract the effects of changes, maintaining levels of
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activity stable within convenient ranges.23 While
Hebbian learning seems to modify synaptic weights
in order to store information in the network, at longer
time scales synaptic rescaling24 readjusts the weights
in a non-specific way. Finally, experimental evidence
indicates that intrinsic plasticity mechanisms mod-
ify the excitability of the neurons in order to adapt
the behavior to changing levels of synaptic input in
several brain areas (e.g. in the visual cortex,25 gan-
glion neurons26; see Ref. 23 for an in-depth review).
The joint operation of all these mechanisms keeps
the network stable with no information loss.27

The interplay between long-term synaptic plas-
ticity and homeostatic mechanisms has recently been
reviewed.28 From a practical point of view, the
dynamic nature of the real world remarkably affects
neural information processing. A typical issue with
networks incorporating STDP learning rules is the
tedious tuning needed to adjust their parameters in
order to cope with the current conditions of the net-
works. Indeed, small changes in network conditions
(including number of inputs, number of outputs, fir-
ing rate of the inputs, correlation of the activity. . .)
tend to destabilize the learning process, even in the
case of supervised learning, requiring a fine readjust-
ment of the parameters to the new conditions.29–31

The introduction of homeostatic and synaptic rescal-
ing processes should automatically prevent the
problem.

Spiking neural networks have long been proposed
to solve different problems involving learning, such
as classification32,33 or combinatorial optimization.34

However, the way information is encoded in the spik-
ing activity of a neuronal population is also critical
to the way a system learns new information.35–37

Several alternatives have been suggested in order
to enable sparse coding in spiking neural network
populations, such as radial-basis function encoding
in early sensorial layers35 and locally competitive
algorithms.38 Thus, biologically plausible learning
rules such as STDP can play a major role in
providing sparse representations of the sensorial
information. Although STDP rules use the time dif-
ference between presynaptic and postsynaptic activ-
ity to potentiate or depress the synapses, its usage is
not restricted to patterns defined in the spike time. In
this sense, oscillations in the local field potential have
been proposed to transform firing rate patterns from

the sensorial pathways into phase-of-firing coding
compatible with STDP learning rules.14 According
to this study, combining an oscillatory input current
with stimulus-dependent static components (includ-
ing current combination patterns) produces varia-
tions in both the phase of firing and the firing rate
that depend on the current of the particular stimulus.
Indeed, these coding mechanisms implemented in a
population of converging neurons have been demon-
strated to enable a target neuron to recognize and
detect the presence of a repetitive current pattern
stimulating the input population,14 enhancing the
unsupervised learning capabilities of spiking neural
networks.39 In addition, a recent theoretical work has
revealed the importance of intrinsic neural resonance
and bursting to enhance the transmission of the sig-
nal in connections equipped with STDP.40

Aiming to dissociate the effect that each of
the aforementioned mechanisms plays in learning
we have constructed a spiking network model of
inhibitory interneurons with lateral inhibition. This
network has been equipped with excitatory (eSTDP)
and inhibitory (iSTDP) spike-timing dependent plas-
ticity and with homeostatic mechanisms (namely,
intrinsic plasticity and synaptic weight scaling). The
network is then stimulated by repetitive patterns
(consisting of different values of current targeting
each of the input-layer neurons involved) over back-
ground noise. After 25min of continuous stimulation
of background noise and correlated input current lev-
els the inhibitory interneurons were responsive to the
presentation of the different patterns. The efficacy of
the recognition and detection was quantified in terms
of information transmission.

iSTDP effectively improved the learning capabil-
ities of the network by increasing the lateral inhi-
bition strength during the beginning of the learn-
ing and reducing it once each inhibitory neuron had
become sensitive to a different pattern. On the other
hand, homeostatic mechanisms made the network
more robust to changes in the learning parameters
and allowed the effective detection of patterns inde-
pendently of the number of afferent neurons included
in it. Therefore, distributed plasticity can imple-
ment a flexible control over information transmis-
sion, even in simple inhibitory interneuron networks,
with potentially important implications for brain
functioning.
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2. Methods

To prove the learning capabilities of eSTDP and
iSTDP mechanisms a recurrent spiking neural net-
work has been implemented. It consists of excitatory
afferent neurons (named excitatory or afferent neu-
rons for simplicity) that converge on a population of
target interneurons (named inhibitory or target neu-
rons for simplicity) generating lateral inhibition as
shown in Sec. 2.1.

The afferent layer of our network conveys
partially-overlapped patterns that are generated over
background noise (see Sec. 2.2). The network input
layer is stimulated for 1500 s and the mutual infor-
mation (MI) between the input pattern sequence
and the activity at the inhibitory population (see
Sec. 2.3) is calculated for the last 200 s. The MI gives
a specific and quantifiable measurement of the learn-
ing capability of the network. Finally, for each of the
studied network settings, the parameter space of the
learning rules (namely, eSTDP and iSTDP) has been
exhaustively explored as shown in Sec. 2.4.

2.1. The network structure

Figure 1(a) shows the structure of the network imple-
mented in this model. It includes 2000 afferent exci-
tatory neurons converging to a reduced population
of inhibitory interneurons (accounting for a vari-
able number of neurons depending on the particular
experiment). Every excitatory neuron connects all
the inhibitory interneurons. The inhibitory interneu-
rons, in turn, inhibit all the other inhibitory neu-
rons. This is the simplest structure allowing the
study of the complementary roles that excitatory and
inhibitory STDP plays when repeated patterns are
presented to the input neurons.

2.1.1. The neuron and synapse models

Excitatory input neurons were modeled using
current-based versions of the LIF model41 (see
Appendix A.1 for further details on the equations
and neurons parameters).

Intrinsic plasticity processes have recently been
shown to modify the excitability of the neurons to
adapt the neuron behavior to changing levels of
synaptic input received.23,25,26 Inhibitory neurons
were modeled using a conductance-based version of
the LIF model (the general equations of this model
are included in Appendix A.1) including intrinsic

plasticity.42 To the best of our knowledge, this is the
only LIF model in the literature integrating intrinsic
plasticity properties.

Additionally, the intrinsic plasticity has been
modeled by updating the inverse value of the mem-
brane capacitance (rC) and the leak conductance
(gleak) as proposed in Ref. 42 according to the fol-
lowing differential equations:

dgleak

dt
= − (−gleak − β)

τIP
, (1)

drC

dt
=

1
rC

+ β · Isyn

τIP
, (2)

where τIP is the intrinsic plasticity time constant
and has been set to 12,000 s and β is a parameter
controlling the shape of the firing rate distribution
and it has been set to 0.8. The τIP value has been
chosen after preliminary simulations maintaining the
amount of LTP fixed within the eSTDP mechanism
(see ALTP

eSTDP parameter in Appendix A.2). This value
is high enough to prevent interferences between the
intrinsic plasticity and the STDP mechanisms dur-
ing the learning process and is low enough to prevent
silent neurons for long periods.

Finally, since the intrinsic plasticity mechanism
aims to regulate the neuronal firing rate, each time
the neuron elicits a spike the rC and gL variables are
modified according to the following equations:

∆rC = −εrC · (1 + β) · Isyn

τIP
, (3)

∆gleak =
εgleak · (1 + β)

τIP
, (4)

where εrC and εgleak control how each elicited spike
influences the membrane capacitance and leak con-
ductance, respectively. These constants have been
set to 34.55F · s/A and 4923.88S · s to make the neu-
ron fire with low activity levels (around 1Hz). These
values were obtained using bidimensional exhaustive
exploration (logarithmic scale) of the firing rate with
stimulation patterns similar to the ones used in this
study. The selected combination of values will lead
the neuron to fire at low (but not too low) firing
rates. The rC and gleak variables have been initial-
ized to 1/50 F−1 and 1/3nS.

Figure 1(b) shows an example of how this neu-
ronal mechanism can adapt the electrical properties
of the neuron to keep its firing rate stable through-
out the simulation. In order to show the stability of
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(a) (b)

(c) (d)

Fig. 1. (Color online) Schematic drawing of the simulated network, stimulation protocols and plasticity mechanisms.
(a) Neural network structure studied. 2000 excitatory neurons (blue circles) receive external stimulation composed of a
carrier 8 Hz oscillatory signal in addition to randomly generated input combinations (embedding the presented patterns).
These neurons make excitatory synapse (with eSTDP, arrow-ending connectors) with the inhibitory cells (red circles)
presenting lateral inhibition (with iSTDP —circle-ending connectors). (b) Example simulation showing the operation
of the intrinsic plasticity mechanism implemented in the inhibitory neurons. Note the output frequency (medium–high)
adaptation in response to the increase of the input frequency (top) occurring at 2000 s (marked with an arrow). After the
leak conductance (mid–bottom) and the membrane capacitance parameters have evolved, the output frequency tends to
stabilize around 1.5 Hz. (c) Representation of the excitatory (eSTDP, top) and inhibitory (iSTDP, bottom) STDP learning
rules. Blue areas represent LTD while red areas indicate LTP. (d) The external stimulation targeting the excitatory neurons
is composed of an 8Hz oscillatory signal (top) in addition to randomly generated input combinations (bottom) (embedding
the presented patterns —red rectangles) for each time-bin (TB). These two signals force each excitatory neuron to elicit
between one and three spikes for each oscillatory cycle as shown in the 2 s raster plot (middle). The pattern-generated
spikes are represented by red dots while the background-generated spikes are in black.

the intrinsic plasticity mechanism the time constant
(τIP) was set to 1200 s (10 times faster than in the
rest of the simulations in the paper). In this simula-
tion, a single neuron (with only one synaptic input)
was set to receive 50Hz input stimulation for the
initial 2000 s and 200Hz stimulation for the remain-
ing 2000 s (top row). In response to this stimulation,

a neuron equipped with intrinsic plasticity adapted
its firing rate, being on average 0.70Hz during the
low-input-rate half and 1.3Hz during the high-input-
rate half (second row). Interestingly, at the begin-
ning of the simulation the neuron was almost silent,
and right after the change of the input rate (arrow)
the neuron reached a peak of 9Hz. However, the
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output-firing rate became stable around 1Hz after
several hundred of seconds’ simulation due to the
adaptation of the leak conductance and the mem-
brane capacitance.

2.1.2. Spike-Time dependent plasticity

The weights of the excitatory synapses (those con-
necting the stimulation fibers with the inhibitory
neurons) have been implemented following classical
additive excitatory spike-time dependent plasticity
(eSTDP)41 (see Appendix A.2).

Hebbian plasticity has been shown to result in
uncontrolled weight growth, producing in certain
cases a lack of selectivity in the receptive fields.23

In order to avoid this undesired behavior, two home-
ostatic mechanisms have been added to the excita-
tory synapses. On the one hand, synaptic weights
have been bounded between 0 and MaxWeighteSTDP,
avoiding that these potentiated connections rise
indefinitely. On the other hand, synaptic scaling24

has been implemented in the excitatory synapses so
that the weights of all those connections targeting
every neuron will be proportionally adjusted to add
up to 40 nS after every second of simulation.

The inhibitory synapses implement a particular
type of symmetric STDP (iSTDP) that neglects the
order in which presynaptic and postsynaptic spikes
occur. As shown in Fig. 1(c) this learning rule will
produce LTP when a presynaptic spike is fired closely
before or after a postsynaptic spike. Meanwhile, LTD
will be produced when presynaptic and postsynaptic
spikes occur uncorrelated (far away in time). The
equation governing the iSTDP learning rule is the
following:

∆w =
1
2
·
(

ALTP
iSTDP · e−

|tpre−tpost|
τ
+
iSTDP

·
(

1 + cos
(

2 · tpre − tpost

τ+
iSTDP

))

−ALTD
iSTDP · C · e−

|tpre−tpost|
τ

.−
iSTDP

·
(

1 − cos
(

2 · tpre − tpost

τ−
iSTDP

)))
. (5)

This formula establishes the iSTDP as the differ-
ence between two exponential functions, emulating
the Mexican-hat shape that has been observed in
experimental results of inhibitory synapse learning

rules.43 The cosine terms make the exponential func-
tions more timely correlated as shown in Fig. 1(c),
avoiding distant pre/post-synaptic spikes affecting
each other. Similarly to the eSTDP rule, τ+

iSTDP and
τ−
iSTDP are the time constants of the potentiation and

depression components and have been set to 125ms
and 195.6ms, respectively. According to these values,
they will potentiate those synapses connecting two
neurons that tend to fire within the same oscillatory
cycle (see stimulation section below) and inversely,
those neurons firing in contiguous oscillatory cycles
will be depressed.

The maximum amount of LTP (ALTP
iSTDP) (occur-

ring in response to a pair of coincident presynaptic
and postsynaptic spikes) has been set to ALTP

iSTDP =
30.0 · 10−3 · MaxWeightiSTDP, whilst the maximum
amount of LTD has been adjusted in relation to the
amount of LTP according to ALTD

iSTDP = r
LTD/LTP
iSTDP ·

ALTP
iSTDP. Similarly to the eSTDP rule, the influence

of MaxWeightiSTDP and r
LTD/LTP
iSTDP parameters in the

information transmission has been studied through-
out the result section. Finally, the constant C has
been set to 5.0451 to normalize the relative influence
of the LTD in relation to the LTP.

The network model has been implemented using
the NEST 2.4.2 simulator.44 Differential equations
were solved using a Runge–Kutta–Fehlberg numeric
method with an integration fixed time step dt of
100 µ s.

2.2. Pattern generation and
stimulation paradigm

In order to test the learning capabilities of the net-
work an extension of the benchmark previously pro-
posed in Ref. 14 has been designed. The benchmark
in Ref. 14 measures the capability of a single neuron
to detect the existence of one pattern of correlated
input activation levels involving an unknown subset
of the afferents. Both the duration of the patterns
occurrences and the interval at which the pattern is
presented are unpredictable. In this paper, we have
extended this benchmark to allow more than one dif-
ferent pattern to be presented and partially overlap
with each other.

Similarly to the way it was implemented in
Ref. 14, a stimulation matrix is randomly generated,
corresponding to the normalized activation levels.
Each row of the matrix represents one afferent cell,
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while each column symbolizes the activation pat-
tern for each time column, where the lengths are
randomly extracted from an exponential distribution
with average 25ms. Therefore, all the afferent neu-
rons change their activation level at the same time
(according to the duration of that particular time
column) as shown in Fig. 1(d).

Each stimulation pattern has been randomly
extracted from this stimulation matrix. We want to
clarify at this point that in this study an input pat-
tern represents a combination of input current val-
ues conveyed to a set of input neurons, but not the
sequence of spikes fired by those neurons. Unless dif-
ferently stated, 10% of the neurons are randomly
chosen to be part of each pattern. A random col-
umn of exactly these neurons is selected and repli-
cated to 20% of the time columns. In case, two or
more patterns have to be generated in the same
time column a random permutation defines the pri-
ority between the overlapped patterns in those affer-
ents which are common to several patterns. Thus,
the first pattern in that permutation will be pre-
sented complete throughout all its associated affer-
ents during the time column, the second pattern will
be presented only throughout those which are not
included in the first pattern, and so on. However,
this priority is again, randomly generated for succes-
sive time columns. This design emulates the way in
which opaque objects hide other backward objects in
natural scenes.

Once all the patterns have been replicated
throughout the whole simulation time, both the rows
and the columns of the activation matrix are itera-
tively normalized, aiming to keep the time-averaged
and population-averaged activation levels constant
throughout the simulation.

Finally, the matrix activation levels were trans-
formed into spike activity by means of the 2000
current-based LIF afferent neurons. These cells were
set to receive the input currents according to the acti-
vation matrix added to a common sinusoidal signal
according to the following equation:

Ie(t) =
A

2
· sin(2 · π · f · t − π) + Act(t)

· (MaxAct − MinAct) + MinAct, (6)

where Ie(t) is the total excitatory current stimulating
the afferent neuron (see Eq. (A.1) in Appendix A),

A = 0.15pA is the amplitude of the oscillatory sig-
nal, f = 8Hz is the frequency of the oscillation,
Act(t) is the normalized level of activation extracted
from the activation matrix, and MaxAct = 1.15 pA
and MinAct = 0.90 pA are the maximum and mini-
mum levels of currents corresponding to the activa-
tion levels of the matrix. These values were chosen to
ensure that every afferent neuron fires between one
and three spikes within a single oscillatory cycle.

1500 s simulations have been run. During the
entire simulation, the network has been exposed to
both the input patterns and a random background
activity (according to the matrix commented above)
all being modulated by an oscillatory signal. For the
last 200 s, the stimulation patterns and the response
of the interneuron population have been recorded
and analyzed in order to extract the amount of trans-
mitted information.

2.3. Analysis of simulated results:
Mutual information

Following the benchmark proposed in Ref. 14 the
pattern recognition accuracy was estimated by using
information theory. The simulation time was dis-
cretized with 125ms bins (the same length of the
oscillatory cycles). A pattern was considered to occur
in a TB if, and only if, it was present for at least half
of the bin length. Then, all the combinations of pat-
terns (each one being present or not) were considered
as the possible states of the stimulation (S), while
all the combinations of the inhibitory neuron activ-
ity (each neuron firing or not) were considered as
the possible states of the response (R). The MI14,45

between the neuron population activity and the stim-
ulation patterns was calculated according to the fol-
lowing formula:

MI = H(S) + H(R) − H(S, R), (7)

where H(S) is the entropy of the stimuli, H(R)
the entropy of the responses and H(S, R) the joint
entropy of the stimuli and the responses and are
defined as follows:

H(S) = −
∑
s∈S

P (s) · log2(P (s)),

H(R) = −
∑
r∈R

P (r) · log2(P (r)),

H(S, R) = −
∑
s∈S

∑
r∈R

P (s, r) · log2(P (s, r)),

(8)

1650020-7

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

16
.2

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
02

/1
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

April 12, 2016 15:23 1650020

J. A. Garrido et al.

where S is the set of all the possible combinations
of presence/absence of input patterns and R is the
set of all the possible combinations of firing/silence
of the inhibitory neurons. P represents the estima-
tion of the probability of occurrence of the stimu-
lus combinations, the response combinations or both
simultaneously. This estimate has been calculated
considering the last 200 s of the simulation.

A perfect detector would present H(S) =
H(R) = H(S, R), and the upper bound of the MI
would be MImax = H(S). Our aim is to study the
scalability of our network model according to the
increasing number of patterns to be identified. The
ratio between the MI and the maximal MI gives us
a normalized estimator for quantifying the learning
capability of our model.46 Therefore, the uncertainty
coefficient (UC) has been defined as follows:

UC =
MI

MImax
=

H(S) + H(R) − H(S, R)
H(S)

, (9)

where MI represents the actual mutual informa-
tion obtained with the network at the end of the
simulation and MImax is the maximum mutual infor-
mation that could be reached with that particu-
lar stimulation. Therefore, a perfect detector would
obtain UC = 1.

2.4. Parameter fitting with exhaustive
exploration

As commented above, two parameters of each learn-
ing rule have been adjusted in order to determine
the recognition capabilities of the network. Namely,
MaxWeighteSTDP, r

LTD/LTP
eSTDP have been exhaustively

explored by using tridimensional figures mapping the
setting values and the UC obtained with such a con-
figuration. Once the best eSTDP setting has been
obtained and fixed in the network, the iSTDP param-
eters (MaxWeightiSTDP and r

LTD/LTP
iSTDP ) have been

explored following the same procedure. This explo-
ration strategy allows us to gain a graphical view of
the influence that each parameter has in the pattern
recognition accuracy of the network.

However, multidimensional evolutionary algo-
rithms have also been used to rule out any
dependence amongst eSTDP, iSTDP, and intrin-
sic plasticity parameters. The average UC, with
20 different seeds, was used as the fitness func-
tion of the algorithm. Each individual consisted of
the eSTDP (MaxWeighteSTDP and r

LTD/LTP
eSTDP ), the

iSTDP (MaxWeightiSTDP and r
LTD/LTP
iSTDP ), and the

intrinsic plasticity parameters (εrC, εgleak and τIP).
The crossover operator permuted one of the param-
eters between the selected individuals whereas the
mutation operator set one of the parameters to a
new random value. The best individuals were similar
to those obtained with the bidimensional exhaustive
exploration.

In order to avoid a particular seed (used to gen-
erate both the stimulation current sequence and the
initial weights of the network) influencing the param-
eter fitting procedure, 20 simulations (with different
seeds) have been run with each parameter set, and
the average of the UC has been used to select the
optimal configuration. Finally, aiming to validate the
results of the fitting procedure and a fair comparison
of different networks, the selected setting has been
tested over a fully different set of 250 fixed seeds.

This algorithm was implemented in Python, call-
ing the NEST Python interface47 and was executed
in parallel at the Alhambra cluster at the University
of Granada by using 128 cores (for each execution of
the parameter exploration algorithm).

3. Results

We have reproduced the results reported in Ref. 14
as starting point. In this study, a single target neuron
was able to recognize one pattern when it was pre-
sented to the input layer (Sec. 3.1). We have added
to this initial network configuration a second tar-
get neuron and an additional overlapped input pat-
tern (Sec. 3.2). Finally, we have scaled the number
of patterns, target neurons (Sec. 3.3) and inhibitory
neurons per pattern (Sec. 3.4) model. This scaling
allowed us to extend the role of the lateral inhibi-
tion and iSTDP in model learning. Finally, modi-
fying the number of inputs involved in the pattern
allowed us to quantify the impact of intrinsic plas-
ticity and weight scaling in the model learning capa-
bilities (Sec. 3.5).

3.1. Single pattern recognition with
eSTDP

As a first step, we reproduced the results previ-
ously reported in Ref. 14, in which a similar net-
work including 2000 afferent neurons and a single
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target neuron that was able to detect the occur-
rence of a single pattern only. After exhaustive explo-
ration of the eSTDP parameter space (including
MaxWeighteSTDP and r

LTD/LTP
eSTDP parameters, since no

lateral inhibition is included with only one target
neuron), the network managed to recognize when the
pattern was presented with similar accuracy as in
Ref. 14. At the beginning of the simulation (Fig. 2(a),
left), the target neuron remained silent due to the
parameters set for the neuron model (namely, inverse
of membrane capacitance, rC and leak conductance,
gL) and the weights of the excitatory connections.
However, due to the low initial firing rate of the
target neuron, the intrinsic plasticity mechanism
reduces rC and gL and the neuron starts firing unse-
lectively after 200 s (Fig. 2(a), middle), eliciting sin-
glets or doublets every oscillatory cycle.

Once the target neuron starts firing, the
eSTDP mechanism adjusts the excitatory weights,

potentiating those connections whose presynaptic
spikes frequently happen right before the postsy-
naptic spike. This mechanism drives the postsy-
naptic neuron to nearly perfect recognition of the
pattern (Fig. 2(a), right) after 600 s of simulation
and remains stable from that moment. Thus, at
the end of the simulation time, the target neuron
fires only in response to the presentation of the
pattern in the afferent neurons. The eSTDP mech-
anism strengthens those connections whose affer-
ent neurons are included in the pattern and whose
activation levels make them fire before the post-
synaptic firing phase (Fig. 2(b)), whilst decreas-
ing the remaining connections. In particular, those
synapses involving afferent neurons with activation
levels ranging between 0.25 and 0.6 (Fig. 2(b)),
become potentiated. As expected, the afferent neu-
rons corresponding to those connections tend to fire
(when the pattern is presented to the network) some

(a)

(b) (c)

Fig. 2. (Color online) Learning with one target neuron and one pattern. (a) Membrane potential of the target neuron
(top) and a raster plot of 50 randomly chosen excitatory neurons (middle). The red lines at the bottom represent when
the pattern is presented to the afferent neurons. The activity at 1 s (left), 200 s (middle) and 1500 s (right) is shown. The
vertical bars over the membrane potential lines indicate the occurrence of inhibitory spikes. (b) Normalized excitatory
synaptic weights after 1500 s of simulation as a function of the activation level of the corresponding afferent neuron during
presentation of the pattern. (c) Normalized oscillatory current conveyed to all the afferent neurons (left). Afferent neuron
firing phase as a function of the activation level during an oscillatory cycle (middle). Note that firing phase slightly shifts
due to the variability in the initial membrane potential of each afferent neuron. The green box represents the activation
levels that are not depressed at the end of the learning as represented in (b). Target neuron firing phase during a 1500 s
simulation (right).
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milliseconds earlier than the peak of the input oscil-
lation (≈2.08 rad) (Fig. 2(c), left and middle). Simi-
larly, target neuron firing evolves from unpredictable
phase mainly during the near-the-top range at the
beginning of the learning process to precise firing
occurring at around 2.08 rad at the end of the simu-
lation (Fig. 2(c), right).

3.2. Multiple pattern recognition with
eSTDP and iSTDP

Once the network and its plasticity mechanisms
had been shown to recognize complex patterns,
we wondered whether a network including several
inhibitory neurons connected with synapses imple-
menting iSTDP would be able to recognize multi-
ple partially overlapping patterns. In order to test
this hypothesis, a second neuron was added to

the network and inhibitory synapses equipped with
iSTDP were set reciprocally connecting each target
neuron. In addition to this, two randomly chosen pat-
terns were inserted over the background noise and
the network simulation was allowed to run for 1500 s.

Similarly to the case with only one pattern, at the
beginning of the simulation the two inhibitory neu-
rons remain silent (Fig. 3(a), left) until their intrin-
sic plasticity modifies the electrical properties of the
neurons to increase the average firing rate. At the
end of the simulation, each one of the target neurons
becomes responsive to one of the patterns (Fig. 3(a),
right) and fires if and only if its corresponding pat-
tern is presented to the afferent neurons. Interest-
ingly, even in those oscillatory cycles in which the
two patterns were simultaneously presented the two
inhibitory neurons fire, enabling stimulation patterns
to be detected independently of the presence of the

(a)

(b) (c) (d)

Fig. 3. (Color online) Learning with two inhibitory neurons and two patterns. (a) Membrane potential traces of the
inhibitory neurons (top, black and gray traces) and a raster plot of 50 randomly chosen afferent neurons (middle). The
red and green lines at the bottom represent when patterns one and two are presented to the afferent neurons. The
2 s activity after 15 s (left) and 1498 s (right) of simulation are shown. The vertical bars over the membrane potential
lines indicate the occurrence of spikes in inhibitory neurons one (black) and two (gray). Note that inhibitory neuron
one becomes responsive to pattern one while inhibitory neuron two becomes responsive to pattern two. (b) Normalized
excitatory synaptic weights after 1500 s of simulation as a function of the activation level of the corresponding afferent
neuron in each presented pattern (pattern one red, pattern two green). Representation of the synapses targeting the
inhibitory cells one (left) and two (right). (c) Inhibitory neuron firing phase during a 1500 s simulation. (d) Evolution of
the inhibitory synaptic strengths (connecting the inhibitory neurons one with each other) during the simulation. Note
that two traces overlap (black and gray) but they have similar values almost all the time due to the symmetric iSTDP.
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other pattern (contrary to what occurs in winner-
takes-all networks15).

Figure 3(b) represents the synaptic weights
between the afferent neurons included in each pat-
tern (represented as its activation level) and the tar-
get neurons. It evidences that eSTDP potentiates
connections included in pattern one (with activa-
tion levels ranging between 0.4 and 0.6) and target-
ing inhibitory neuron one (Fig. 3(b), left), and those
connections included in pattern two (with activation
levels between 0.5 and 0.7) and targeting inhibitory
neuron two (Fig. 3(b) right). All the remaining
synapses were depressed. According to these results,
the eSTDP learning rule will either punish or reward
by either increasing or decreasing the weights asso-
ciated to certain activation levels depending on: (i)
the ratio between maximum LTP and LTD (the
r
LTD/LTP
eSTDP parameter), and (ii) the offset of each

presynaptic spike occurring during pattern presenta-
tion. The combination of these factors will define the
range for the potentiated activation levels and the
offset of the inhibitory spike (Fig. 3(c)). The acti-
vation levels potentiated by eSTDP might become
different depending on the actual sampled patterns
and the r

LTD/LTP
eSTDP (compare the weights between

Figs. 2(d) and 3(b)).
This combination of synaptic weights and acti-

vation levels drives the target neurons to fire in
response to their corresponding patterns with differ-
ent phases (around 2.03 rad for the first target neu-
ron — responsive to the first pattern and 1.88 rad for
the second target neuron — responsive to the second
pattern) (Fig. 3(c)). Indeed, the final configuration
of weights frequently conducts the second target cell
to elicit a second spike (doublet) (around 3.82 rad
phase) in response to the second pattern (Fig. 3(c)).

Finally, this simple example allowed us to qual-
itatively show the operation of the iSTDP mecha-
nism in the inhibitory synapses between target neu-
rons (Fig. 3(d)). When the target neurons start firing
unselectively (between 0 s and 200 s) the inhibitory
weights of these connections are increased due to
the highly-correlated firing between the two target
neurons. As a consequence of the weight increase,
the reciprocal inhibition reduces the probability of
both neurons to fire in the same oscillatory cycle
(or respond to the same pattern), leading every
target neuron to become specialized in a different
pattern. Therefore, the activity of the two target

neurons becomes less correlated, and the iSTDP rule
depresses the weights of both inhibitory synapses
(between 200 s and 300 s). From then on, the iSTDP
learning rule keeps the inhibitory weights low until
the end of the simulation.

3.3. Multiple pattern scalability with
eSTDP and iSTDP

Once our simple network including eSTDP and
iSTDP proved able to recognize two random pat-
terns presented to the input cells, we wondered
whether this system scales up to recognize more
than two patterns and how the learning rule param-
eters need to be modified for successful learning in
each particular case. Therefore, we have explored the
learning parameter space independently for eSTDP
parameters (MaxWeighteSTDP and r

LTD/LTP
eSTDP ) and

iSTDP parameters (MaxWeightiSTDP and r
LTD/LTP
iSTDP )

by using a network including four target cells and
being stimulated with four patterns inserted over
background noisy activity. The best configuration
(in terms of average UC) has been found with
MaxWeighteSTDP = 1.1 nS and r

LTD/LTP
eSTDP = 1.1

(Fig. A.1(a), left), MaxWeightiSTDP = 11.9 nS and
r
LTD/LTP
iSTDP = 0.552 (Fig. A.1(b), left).

After 512 repetitions with the same network
and learning rule parameters but different initial-
ization seeds, simulations yield average UC =
0.53 ± 0.098. Interestingly, the range of eSTDP
parameters with high UC (above 0.5) was rather
wide ranging from MaxWeighteSTDP = 0.5 nS
up to the MaxWeighteSTDP = 3.0 nS (maximum
explored value) and from r

LTD/LTP
eSTDP = 1.0 up

to r
LTD/LTP
eSTDP = 1.8. On the other hand, those

iSTDP parameters ranging from r
LTD/LTP
iSTDP = 0.40

to r
LTD/LTP
iSTDP = 0.60 yield high UC (assum-

ing nonnegligible MaxWeightiSTDP). High values of
MaxWeightiSTDP require higher r

LTD/LTP
iSTDP values,

whilst the low values of MaxWeightiSTDP need to
be compensated by lower r

LTD/LTP
iSTDP values. As far as

the coefficient of variation (CV) is considered, those
areas with high UC also present lower CV values
(right column in Fig. (A.1) and A.1(b)), indicating
that most of the patterns were frequently recognized
with high accuracy by those configurations.

Similarly to the iSTDP configuration, the space
of parameters has been explored for (i) the net-
work including eSTDP and fixed inhibition (instead
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of iSTDP) and (ii) the network including no
inhibition between the target neurons. In the
first case, the best configuration is obtained with
MaxWeighteSTDP = 1.2 nS, r

LTD/LTP
ieTDP = 1.3

(Fig. A.2(a)) and inhibitory synapses set to 1.8 nS
(Fig. A.2(b)). This configuration drives the network
to perform with UC = 0.49 ± 0.10 (Fig. 4(a)).
The network with no inhibition obtains its best
accuracy with MaxWeighteSTDP = 1.1 nS and
r
LTD/LTP
eSTDP = 1.7 (Fig. A.3(a)), with UC = 0.40 ±

0.12. Therefore, when the afferent neurons receive
four different patterns the network with iSTDP
between the target neurons outperforms (on pat-
tern recognition accuracy) the one with fixed lateral

inhibition and the counterpart with no inhibition
at all.

In order to verify how the proposed networks
scale up with the number of patterns, the three con-
figurations (with iSTDP, fixed-weight lateral inhibi-
tion or with no lateral inhibition at all) have been
presented to 1, 2, 4 and 8 random patterns (and the
corresponding number of target neurons). The net-
work with iSTDP outperforms the network includ-
ing fixed inhibition and the one with no inhibition,
yielding higher recognition accuracy as shown by the
average UC independently of the number of pat-
terns/neurons (Fig. 4(a)). The network with iSTDP
more accurately performs input pattern recognition,

(a) (b)

(c)

Fig. 4. (Color online) Scalability of pattern recognition performance with the number of patterns. Comparison of the
network including iSTDP (green circles), fixed inhibition (red triangles) and no inhibitory connections at all (blue squares).
(a) UC obtained after the learning process when 1, 2, 4 and 8 different random patterns were presented to the excitatory
cells. Each point represents the average over 150 simulations with different seeds. The shadows represent the standard
deviation. (b) Box-and-whisker representation of the UC obtained with 2, 4 and 8 patterns and inhibitory cells. Each box
shows the first, second and third quartile of the samples, and the whiskers represent 1.5 times the inter-quartile range. The
UC for each sample is marked with a dot, while the outliers are represented with a cross. (c) Histogram of the samples
as a function of the UC with 2 (left), 4 (middle) and 8 (right) cells/patterns. Note that numbers have been included
indicating the UC corresponding to highly accurate recognition of 1 to 8 patterns.
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with the UC ranging between 0.53 (four patterns and
four target cells) up to 0.62 (one pattern and one
target cell).

Nevertheless, the network with fixed inhibition
obtains high information transmission ratios [UC
0.03 units lower than the network configuration with
iSTDP (Fig. 4(a))]. In a network lacking lateral inhi-
bition, the target neurons are prone to respond to
the same input pattern. Inserting lateral inhibition
decreases the probability of different neurons to fire
in the presence of the same pattern, thus enhancing
the information transmission. Unluckily, fixed inhibi-
tion prevents two neurons from firing together when
their respective patterns are presented simultane-
ously. iSTDP, as already demonstrated, overcomes
this problem.

Aiming to determine the source of the difference
we observed the UC obtained in the 512 samples
(with different initialization seeds) that were used
for the average calculation. Given the wide diver-
sity of information transmission with each particular
simulation (even when using the same network), the
histogram of UC allows us to explore the distribu-
tion of particular simulations. As can be observed
in the two patterns/two neurons setting (Fig. 4(c),
left), the simulations are grouped around three peaks
at UC values 0, 0.35 and 0.65. These peaks cor-
respond to the cases when the network accurately
recognizes to 0, 1 or 2 of the presented patterns.
The presence of inhibition (e.g. fixed or iSTDP)
notably reduces the number of simulations where
0 or only 1 pattern becomes recognized (Fig. 4(c),
left). In particular, iSTDP effectively shifts some of
the samples from 1 recognized patterns to 2 (even
though some of these samples did not achieve per-
fect recognition as indicated by a shorter quartile box
(Fig. 4(b), green box with two patterns/neurons) and
the wider peak tail (Fig. 4(c), left, green line). Similar
results were extracted from the four pattern/neuron
configuration (Figs. 4(b) and 4(c), center). In this
case, the peaks correspond to 1–3 recognized pat-
terns with no inhibition and are shifted to 2–4 rec-
ognized patterns with fixed inhibition and iSTDP.
However, the network including iSTDP achieves 3
or 4 correctly recognized patterns in a higher num-
ber of samples than the counterpart with fixed
inhibition.

Finally, when the network including eight tar-
get neurons is presented with eight random patterns,

similar peaks can be observed. The network with no
inhibition accurately recognizes between one and six
different patterns (Fig. 4(c), right). The histogram
shifts to higher MT ratios by using fixed inhibition
and inhibitory plasticity. The inclusion of the iSTDP
mechanism leads the network to recognize up to eight
of the presented patterns, although in most of the
cases the network effectively recognized 5 or 6 as
shown by the median and quartiles in Fig. 4(b).

3.4. Scalability with multiple target
neurons per pattern

The network including eSTDP and iSTDP has shown
to scale up with the number of patterns and it per-
forms reasonably accurate pattern recognition. How-
ever, the results are still far from the goal of constant
perfect recognition, especially with eight patterns in
the input. Therefore, we wondered whether increas-
ing the number of target neurons while keeping the
number of patterns fixed (or in other words, increas-
ing the ratio of target neurons per input pattern)
would improve the ability of the network to learn and
detect patterns. Thus, we have used the parameters
that best performed in the four pattern/neuron test
case and we have scaled up the number of inhibitory
neurons from 4 up to 16 neurons. Again, the net-
work with iSTDP has been compared with the net-
works including fixed inhibition and no inhibition
at all.

The inclusion of additional target neurons
markedly enhances the information transmission
independently on the type of inhibitory synapse
being used (Fig. 5(a)), achieving average values of
UC = 0.81±0.05 (over 512 simulations) with iSTDP
and 16 output cells. However, the network with
iSTDP clearly outperforms the model with fixed
inhibition (UC = 0.74 ± 0.08) and the one with no
inhibition (UC = 0.64 ± 0.14).

By using eight target neurons leads the network
to achieve high ratios in most of the 512 test simula-
tions (Figs. 5(b) and 5(c), left), corresponding to all
the four patterns being recognized by at least one
cell. Interestingly, this setting clearly outperforms
the network with only four target neurons (Fig. 4(c),
center). By increasing the number of target neurons,
the probability that at least one neuron becomes
responsive to each pattern increases. Interestingly,
the usage of iSTDP also contributes to improving
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(a) (b)

(c)

Fig. 5. (Color online) Scalability of pattern recognition performance with the number of cells. Comparison of the network
including iSTDP (green circles), fixed inhibition (red triangles) and no inhibitory connections at all (blue squares). UC
obtained after the learning process of four different random patterns. (a) UC obtained with networks accounting from 4
up to 16 neurons. Each point represents the average over 150 simulations with different seeds. The shadows represent the
standard deviation. (b) Box-and-whisker representation of the UC obtained with 4, 8 and 16 inhibitory cells. Each box
shows the first, second and third quartile of the samples, and the whiskers represent 1.5 times the inter-quartile range.
The UC for each sample is marked with a dot, while the outliers are represented with a cross. (c) Histogram of the samples
as a function of the obtained UC with 8 (left) and 16 (right) patterns. Note that numbers have been included indicating
the UC corresponding to highly accurate recognition of 1 to 4 patterns.

the MI as evidenced with the peak distributions in
Fig. 5(c), left.

Increasing the number of target neurons does
not only increase the number of samples with all
the input patterns being recognized, but it also
increases the diversity of neuron responses which can
be concluded from the shift in the peak correspond-
ing to four recognized patterns. While this peak
appears with UC≈ 0.68, by using four target neurons
(Fig. 4(c), center), this peak shifts to UC≈ 0.72 by
using eight target neurons (Fig. 5(c), left) and finally

to UC≈ 0.83 by using 16 target neurons. Two main
reasons can explain this observation: (i) the iSTDP
mechanism enables the recruitment of more than one
target neuron to become responsive to each pattern
but it favors the diversity in the firing phase. (ii)
By using more target neurons in the network allows
some of them to become redundant, thus increasing
the probability of at least one neuron responding to
each pattern presentation. Therefore, the inclusion
of additional target neurons improves the pattern
recognition performance, even in some cases where
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the network with a lower number of neurons failed
(e.g. patterns being presented long after the begin-
ning of the oscillation cycle).

3.5. The role of intrinsic plasticity and
weight scaling: heterogeneous
pattern recognition

The results presented in previous paragraphs show
that iSTDP plasticity in lateral connections enhances
the information transmission capabilities in conjunc-
tion with plastic excitatory synapses. However, we
have equipped our network with several homeo-
static mechanisms (namely, intrinsic plasticity and
weight scaling). Therefore, we wondered to what
extent homeostatic mechanisms influence the net-
work operation. To this aim, we have studied how the
eSTDP optimal parameters (MaxWeighteSTDP and
r
LTD/LTP
eSTDP ) and information transmission are influ-

enced by the selective absence of these homeostatic
mechanisms. The neuron model of the target cells
has been replaced by classical leaky integrate-and-
fire (LIF) with the same electrical parameters as
configured in our control situation. The weight scal-
ing mechanism has been disabled and the eSTDP
parameter space has been explored in the network
with four target neurons (four patterns has been
used to stimulate the afferent neurons). The best con-
figuration with both homeostatic mechanisms (con-
trol case) (MaxWeighteSTDP = 1.1 nS, r

LTD/LTP
eSTDP =

1.1), the best settings with only intrinsic plastic-
ity (MaxWeighteSTDP = 0.8 nS, r

LTD/LTP
eSTDP = 1.0)

and the best configuration lacking intrinsic plastic-
ity and weight scaling (MaxWeighteSTDP = 0.9 nS,
r
LTD/LTP
eSTDP = 1.4), obtained similarly good perfor-

mances (UC = 0.53 ± 0.1, UC = 0.49 ± 0.1, and
UC = 0.50 ± 0.11, respectively).

When weight scaling was enabled and intrin-
sic plasticity disabled, the learning performance
dropped dramatically. Indeed, if the same network
configuration as other case studies were used, the
inhibitory neurons remained silent for the entire sim-
ulation process as occurred in the control case before
the intrinsic plasticity started operating (Figs. 1(a),
1s). To make the inhibitory population become active
the total sum of weights (weight-scaling parame-
ter) was increased from 40nS to 70nS. Despite
the re-setting of the scaling parameter, the UC of
the best configuration (MaxWeighteSTDP = 0.7 nS,

r
LTD/LTP
eSTDP = 1.3) remained lower (UC = 0.21 ± 0.04)

than in any other case study. After a close look at
the simulation results, we found that the total sum
of the synaptic weights was too high at the end of the
simulation, forcing (due to the weight scaling) most
of STDP-depressed synapses to reach higher synap-
tic weights than other configurations. These higher
values, therefore, increased the “false alarms” and
degraded the STDP selectivity.

The representation of the eSTDP parameter
space evidences the role that intrinsic plasticity
and weight scaling play in the network opera-
tion. Whilst the network with homeostatic mech-
anisms obtained high information transfer ratio
with wider parameter range (see Fig. A.1(a))
(MaxWeighteSTDP from 0.5 nS to the maximum value
3nS and r

LTD/LTP
eSTDP from 1.0 to 1.8), this range is

restricted as a result of disabling the weight scal-
ing (Fig. A.4(b)) (MaxWeighteSTDP from 0.5 nS to
1.2 nS and r

LTD/LTP
eSTDP from 0.9 to 1.1), and dis-

abling both intrinsic plasticity and weight scaling
(Fig. A.4(c)) (MaxWeighteSTDP from 0.7 nS to 1.0 nS
and r

LTD/LTP
eSTDP from 1.3 to 1.5). On the one hand, the

intrinsic plasticity avoids target neurons becoming
completely silent (as a result of setting the eSTDP
with high r

LTD/LTP
eSTDP values) or saturated (mainly

with low r
LTD/LTP
eSTDP values). Weight scaling avoids

synaptic weights increasing until those values where
very few excitatory spikes are sufficient to elicit post-
synaptic spikes (producing false positive responses).
Unlike the upper bound on the eSTDP equations
(MaxWeighteSTDP parameter), the weight scaling
mechanism weighted the contribution of all the affer-
ents that target the same neuron. Learning is then
distributed along all the excitatory neurons that the
pattern and the eSTDP activate”. Weight scaling is
also intended to avoid the case where eSTDP drives
all the synapses to extremely low values.

In order to explore more deeply the role that
homeostatic mechanisms play in pattern recognition,
we have tested out how the ratio of afferent neurons
in the pattern affects the system capability to learn
and detect the patterns. Therefore, we have gener-
ated the input patterns by randomly choosing 40%
(instead of the 10% we had used previously in this
work) of the afferent neurons in each pattern and
the eSTDP parameter space has been explored. In
these experiments (in absence of intrinsic plasticity
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and weight scaling) the highest MI ratio occurs with
MaxWeighteSTDP = 0.3 nS and r

LTD/LTP
eSTDP = 1.4,

obtaining UC = 0.54 ± 0.09 averaged over 512 sim-
ulations (Fig. A.5(a)). As expected, increasing the
ratio of afferent neurons included in the pattern (and
consequently the number of synapses potentiated by
the eSTDP) requires the reduction of the maximum
weight in the excitatory synapses. By reducing the
MaxWeighteSTDP parameters allows that a higher
number of afferent cells to be recruited by the eSTDP
whilst keeping constant the total conductance that
each target neuron receives when a pattern is recog-
nized. However, it also allows the LTD/LTP ratio to
be set higher (making the learning more restrictive),
thus controlling the number of excitatory synapses
being potentiated.

Comparing how a network with or without home-
ostatic mechanisms extends to a different ratio of
afferent neurons in the pattern clearly shows the
improvement that these mechanisms represent. The
same network has been optimized to obtain the best
UC as possible in four different versions: (i) includ-
ing intrinsic plasticity and weight scaling (control),

(ii) including only weight scaling (No IP version),
(iii) including only intrinsic plasticy (No norm ver-
sion) and (iv) disabling these two mechanisms (No
norm./IP version). These four versions of the net-
work have been optimized for the case where the
patterns account the 10% of afferent neurons inside
and the resulting configurations have been extended
to different ratios of afferent neurons included. In
all the experiments, the control version outperforms
the ones with no intrinsic plasticity or no normaliza-
tion (Fig. 6(a)). However, the difference in the UC
is markedly higher when the networks are exposed
to afferent ratios (in pattern) different to those used
for the learning parameter adjustment. Indeed, the
control network keeps reasonably good accuracy with
ratios ranging from 5% of the afferents up to 100%,
whilst the network lacking intrinsic plasticity and
weight scaling only can learn patterns accounting
the 10% of the afferents. Similar results have been
found when configuring the network parameters to
detect patterns accounting the 40% of afferent neu-
rons (Fig. 6(b)). Thus, the intrinsic plasticity jointly
with the weight scaling mechanism notably improves

(a) (b)

Fig. 6. (Color online) Effect of the intrinsic plasticity and the weight normalization mechanism. UC obtained after 1500 s
simulations in which four patterns and four inhibitory cells were used. A network with intrinsic plasticity in the inhibitory
cells and weight normalization in the eSTDP connections (control — green) were compared to other settings without
either weight scaling (no norm — blue) either intrinsic plasticity (no ip — gray) or none of these homeostatic mechanisms
(no norm./no ip — red). (a) UC obtained as a function of the ratio of excitatory neurons involved in each random pattern.
The eSTDP and iSTDP parameters were adjusted according to the highest UC when using the 10% of the excitatory
neurons in the pattern. Each point represents the average over 150 simulations with different seeds. The shadows represent
the standard deviation. (b) UC obtained as a function of the ratio of excitatory neurons involved in each random pattern.
In this case, the eSTDP and iSTDP parameters were adjusted according to the highest UC when using the 40% of the
excitatory neurons in the pattern.
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the capability of the network to learn and recognize
heterogeneous patterns within networks with differ-
ent numbers of afferent neurons.

4. Discussion

This paper shows that a simple network of inhibitory
interneurons with STDP both at the excitatory input
synapses and at the reciprocal inhibitory synapse is
sufficient to accurately learn and detect the presen-
tation of partially overlapping and repeated input
patterns. Intrinsic plasticity in the inhibitory neu-
rons and weight scaling in the excitatory connections
are needed to make the network robust to param-
eter changes. This ensemble of mechanisms allows
the recognition of heterogeneous patterns involving
between 5% and 100% of the input neurons with no
need of configuration changes and we discuss the rel-
evance of these effects for brain regulatory mecha-
nisms and network computation.

Simulations show that eSTDP drives each tar-
get neuron to become sensitive to one of the repet-
itive patterns presented in the afferent neurons. In
this scenario, lateral inhibition amongst the tar-
get neurons significantly enhances sparseness at the
inhibitory neurons, thus preventing several target
neurons from becoming sensitive to the very same
pattern. These results are consistent with previous
studies in winner-takes-all recurrent networks.15 Our
model goes one step further in pattern recognition.
Our network is not just able to operate with par-
tially overlapped patterns but also with simultane-
ous patterns. The presence of iSTDP in the lateral
inhibitory synapses proves its worth by creating a
sparse coding amongst the inhibitory neurons. On
the contrary, laterally fixed inhibition, as in Ref. 15,
avoids target neurons firing conjointly when several
patterns are simultaneously presented at the input.
Thus, the inhibitory interneurons operate as a mul-
tiple and overlapping pattern decoder, detecting the
repetitive presence of densely-coded patterns in the
excitatory afferents and creating sparse representa-
tion of those patterns. All these features enable the
accurate transmission of information between the
input and the target population and facilitating sub-
sequent processing in deeper neuronal layers.

Increasing the number of inhibitory neurons effec-
tively improved the pattern recognition capability of
the network. Thus, with a number of neurons twice

as large as the number of patterns, the network is
able to recognize all the presented patterns in most of
the tested simulations (Figs. 5(a) and 5(c)). iSTDP
in the lateral inhibition was crucial for efficiently dis-
tributing the available neurons amongst the patterns
presented at the input.

The simulations in this paper also make usage
of previous studies by other authors showing how
theta-frequency (4–8Hz) oscillations, in conjunction
with excitatory STDP can drive a single neuron to
robustly detect a pattern of input currents even when
a small fraction of the afferents are included in each
pattern14. Interestingly, the presence of a reference
oscillatory signal in the local field potential allows
patterns of current level correlation to be trans-
formed into phase correlation that can be efficiently
processed by spike-timing learning rules.

Additionally, this study evidences that the inter-
play between eSTDP and iSTDP drives redundant
target neurons to detect the presence of the same
pattern at different phases of the oscillations, allow-
ing the recognition of the pattern even when it was
presented at a later stage of the oscillation, thus
improving the information transmission as shown
in Fig. 5(a). According to our simulations, certain
parameter configurations of eSTDP make the tar-
get neurons elicit bursts of spikes (mainly doublets,
but also some triplets) in response to the detection
of a particular pattern. Our input layer is able to
elicit different numbers of spikes per oscillation cycle
as a phase-of-firing code does. Therefore, additional
neural layers equipped with STDP could extract rel-
evant information in a similar way to the present
model.

The current model is made of LIF neurons and
includes intrinsic plasticity to adjust the electri-
cal properties of the neurons. However, it is not
endowed with realistic ionic channels properties of
the kind characterizing neuronal membranes and
synaptic connections. Therefore, it revealed funda-
mental network-dependent and long-term-plasticity-
dependent properties, which could then be compared
with intrinsic properties of neurons and synapses.
Interestingly, several neurons in the brain have
experimentally been demonstrated to resonate in the
theta-frequency band. This is the case of the CA1
neurons in the hippocampus48 and the granule49,50

and Golgi cells51 in the input layer of the cerebellum.
Realistic properties of these neurons should favor the
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phase-of-firing coding in the theta-frequency band
presented in this paper.

The simulations presented in this paper show
that recognition of patterns including arbitrary
ratios of afferent neurons can be achieved by means
of the inclusion of intrinsic plasticity and synaptic
weight scaling. Patterns accounting from 5% up to
100% of the afferent neurons have been effectively
learned and detected with the same network con-
figuration. Whilst intrinsic plasticity avoids target
neurons becoming silent or highly active for a long
time, weight scaling jointly with eSTDP distributes
learning between all the afferent neurons that fire in
the selected phase, thus reducing the occurrence of
false detection spikes. Nonetheless, according to our
simulations, these two mechanisms should be treated
as a whole. Weight scaling demands the presence of
intrinsic plasticity to cope with the variation of the
weight distribution during the learning process by
means of the adjustment of the neuronal electrical
properties.

Intrinsic plasticity in the present model has been
implemented following the equations previously pro-
posed in Ref. 42. That model has been demonstrated
to adjust not only the firing rate, but also the tun-
ing curve of the neuron according to the actual dis-
tribution of the inputs received by the neuron.42 In
the current model, firing rate adaptation depends on
the adjustment of membrane capacitance and leak
conductance, reflecting the simplicity of LIF models
that lack synaptic channels. However, experimental
studies indicate that changes in intrinsic excitability
in real neurons mainly reflect modifications of volt-
age gated channels.52,53 Moreover, the inclusion of
realistic firing regimes in the neuron model (such as
bursting or resonance) are thought to enhance sig-
nal transmission and learning capabilities in spiking
neural networks equipped with STDP.40 Thus, the
implementation of more detailed models of the neu-
ronal excitability54 and the integration of these mod-
els into complex learning tasks will greatly improve
the understanding of the mechanisms of learning.55

Similarly, weight scaling has been implemented
in this model by periodic normalization of the exci-
tatory weights as previously done in the literature.56

This simple strategy allows the neurons to remain
stable as long as the STDP learning rules evolve,24

introducing competitiveness in the synaptic inputs57

and making the STDP learning rule less sensitive

to changes in parameters.58 Biologically speaking,
excitatory postsynaptic currents have experimentally
evidenced that their average amplitude increases
or decreases in response to changes in the input
activity.59–61

These simulations show that distributed synap-
tic plasticity strongly enhances pattern recogni-
tion capabilities of simple spiking networks driving
inhibitory interneurons to recognize correlated activ-
ity. Previous studies have already evidenced that
neural networks including plasticity at several synap-
tic layers, controlling spike-timing much better than
plasticity at a single synapse62 and effectively adapt
gain in multi-layer cerebellar networks.63 Interest-
ingly, the simulations in this study are compatible
with the learning states previously predicted for the
cerebellar input layer in Ref. 62. This paper makes a
further step ahead by showing how inhibitory plastic-
ity in lateral inhibitory connections effectively com-
plements excitatory plasticity in order to distribute
the interneurons between multiple input patterns.
Adding the feedback loop that typically connects
excitatory neurons and interneurons can extend the
network implemented here. This is the case of the
loop between granule cells and Golgi cells in the
cerebellum.64 Once the interneurons become respon-
sive to the different patterns being presented in the
inputs, the inhibition of the feedback loop could
effectively distribute the population of excitatory
neurons to generate sparse representations of the sen-
sorial inputs in a similar way as it has been proposed
for the primary visual cortex.20

The results of these simulations further extend
the capabilities of the interneuron beyond their tra-
ditional role of homeostatic regulators in feedback
inhibitory loops. Our results confirm that inhibitory
interneurons may enhance sparse coding in excita-
tory neurons. We have shown that both excitatory
and inhibitory plasticity are fundamental to dis-
tribute different patterns amongst the whole popu-
lation of interneurons. In the light of these results,
revisiting the role of different interneuron networks
within two well-known brain regions, such as the
cerebellum (Golgi cells) or the motor cortex, must
be the next challenge. Understanding how cerebel-
lar Golgi cells can control the level of activity of
excitatory granule cells65 or how the interneurons of
the motor cortex66 can optimally control the tran-
sient dynamics of the excitatory neurons keeping the
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network stable67 are questions that our results may
help to answer.

Future work will include a new layer of excita-
tory neurons connected by inhibitory feed-back and
feed-forward pathways to our output layer. This new
configuration will account for the nonlinear dynamics
that is imposed by the presence of voltage-dependent
conductances in the neuronal membrane. It will be
interesting to explore how these network and neuron
features may enhance the learning capabilities of the
network even in nonsynthetic datasets.
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Appendix A. Neuron and Synapse
Models

A.1. The neuron and synapse models

The excitatory input neurons were modeled using
a current-based version of the LIF. In this neu-
ron model, the membrane potential (Vm) is com-
puted through the differential equation (A.1), which
accounts for the effect of fast (AMPA-receptor medi-
ated) chemical excitatory synapses and resting con-
ductance (Grest),

dVm

dt
= − (Vm − Erest)

τm
+

Ie(t)
Cm

, (A.1)

where Cm denotes the membrane capacitance, Vm

is the membrane potential, Erest represents the rest-
ing potential, τm is the membrane time constant and
finally, Ie(t) is the total excitatory current stimu-
lating the neuron at a certain time t (see stimula-
tion paragraph for a detailed explanation about the
external stimulation of the neurons). These constants
have been set as follows: Cm = 2 nF, Erest = −70 mV
and τm = 10 ms. Every time the membrane potential
overpasses the threshold potential (Eth = −54 mV) a
spike is elicited and the membrane potential is reset
to Erest. The refractory period (tref) has been set to
1ms and during this period the neuron membrane
potential was clamped to Erest.

Inhibitory neurons were modeled using a
conductance-based version of the LIF model includ-
ing intrinsic plasticity. The membrane potential evo-
lution of this neuron model is described via the fol-
lowing equation:
dVm

dt
= rC · (−gleak · (Vm − Erest) + Isyn), (A.2)

where Vm represents the membrane potential, Erest is
the resting potential, rC and gleak represent, respec-
tively, the inverse of the membrane capacitance and
the leak conductance and Isyn is the total cur-
rent that the neuron receives through the synapses
according to Eq. (A.3):

Isyn = −gexc · (Vm − Eexc) − ginh · (Vm − Einh).

(A.3)

Eexc and Einh represent the reversal potential of the
excitatory and inhibitory synapses and have been
set to 0 mV and −80 mV, respectively. When the
membrane potential goes above the threshold poten-
tial (Eth = −50 mV) a spike is elicited and the
membrane potential is reset to Erest. The refractory
period (tref) has been set to 2ms. The excitatory
(gexc) and inhibitory (ginh) conductances of a partic-
ular neuron i have been modeled using exponential
functions68 as follows:

τexc · dgexc,i

dt
= −gexc,i +

∑
k∈ExcSpi

wji(tk) · δ(t − tk),

(A.4)

τinh · dginh

dt
= −ginh +

∑
k∈InhSpi

wji(tk) · δ(t − tk),

(A.5)

where τexc and τinh represent the excitatory and
inhibitory time constants and have been set to 0.5ms
and 10ms respectively, ExcSpi/InhSpi is the set of
the spikes reaching the neuron i through the exci-
tatory/inhibitory afferent synapses and δ(t) is the
Dirac delta function. According to these equations,
every time a spike is received (at time tk) through
an excitatory or inhibitory connection (linking the
presynaptic neuron j and the postsynaptic neuron i),
the excitatory or inhibitory conductance is increased
accordingly to the synaptic weight existing in that
synapse (wji). For simplicity, these equations con-
sider both excitatory and inhibitory conductances
and synaptic weights to be positive or zero.

The equations of the intrinsic plasticity mecha-
nism have been included in Sec. 2.2.1.
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A.2. Spike-Time dependent plasticity

The weights of the excitatory synapses (those con-
necting the stimulation fibers with the inhibitory
neurons) have been implemented following classi-
cal additive eSTDP. According to this type of Heb-
bian plasticity, LTP is produced when a postsynap-
tic spike is elicited shortly after a presynaptic spike.
Inversely, a presynaptic spike following a postsynap-
tic spike will generate LTD (Fig. 1(c)). The equations
governing the weight change are as follows:

∆w =




ALTP
eSTDP · e−

tpost−tpre

τ
+
eSTDP if tpost ≥ tpre,

ALTD
eSTDP · e−

tpre−tpost

τ
−
eSTDP otherwise,

(A.6)

where τ+
eSTDP and τ−

eSTDP are the time constants
of the potentiation and depression components and
have been set to 16.8ms and 33.7ms, respectively.
The tpost and tpre variables refer to the time when
the postsynaptic and presynaptic spikes happen. An
all-to-all implementation of this eSTDP has been
used, so that all the previous spikes have been con-
sidered in order to calculate the total amount of LTD
and LTP produced. The maximum amount of LTP
(ALTP

eSTDP) being produced after two (one presynap-
tic and one postsynaptic) coincident spikes has been
set to ALTP

eSTDP = 3 · 10−3 ·MaxWeighteSTDP while
the maximum amount of LTD (ALTD

eSTDP) has been
adjusted in relation to the amount of LTP accord-
ing to ALTD

eSTDP = r
LTD/LTP
eSTDP ·ALTP

eSTDP. The influence
of MaxWeighteSTDP and r

LTD/LTP
eSTDP parameters have

been analyzed throughout this paper in different con-
ditions and their values have been adjusted with the
aim of achieving the highest information transmis-
sion between the input layer and the inhibitory cells
(see MI section below).
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Supplementary Figures

(a)

(b)

Fig. A.1. eSTDP and iSTDP plasticity parameter exploration with four inhibitory neurons and four patterns with iSTDP
between the inhibitory neurons. Each circle represents the average over 30 simulations and the best performing setting has
been highlighted in bold. (a) Average of the UC (left) and CV (right) obtained as a function of the eSTDP parameters:

(MaxWeighteSTDP —x-axis) and LTD/LTP ratio (r
LTD/LTP
eSTDP —y-axis). (b) UC (left) and CV (right) obtained as a function

of the iSTDP parameters: (MaxWeightiSTDP —x-axis) and LTD/LTP ratio (r
LTD/LTP
iSTDP —y-axis).
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(a)

(b)

Fig. A.2. eSTDP plasticity and inhibitory weight parameter exploration with four inhibitory neurons and four patterns
with fixed inhibition between the inhibitory neurons. Each circle represents the average over 30 simulations and the best
performing setting has been highlighted in bold. (a) Average of the UC (left) and CV (right) obtained as a function of

the eSTDP parameters: (MaxWeighteSTDP —x-axis) and LTD/LTP ratio (r
LTD/LTP
eSTDP —y-axis). (b) UC as a function of

the inhibitory weight between the inhibitory cells.

Fig. A.3. eSTDP plasticity weight parameter exploration with four inhibitory neurons and four patterns with no inhibi-
tion between the inhibitory cells. Each circle represents the average over 30 simulations and the best performing setting
has been highlighted in bold. (a) Average of the UC (left) and CV (right) obtained as a function of the eSTDP parameters:

(MaxWeighteSTDP —x-axis) and LTD/LTP ratio (r
LTD/LTP
eSTDP —y-axis).
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(a)

(b)

(c)

Fig. A.4. eSTDP plasticity parameter exploration with four inhibitory neurons, four patterns and 10% percent of the
excitatory neurons included in each pattern. Each circle represents the average over 20 simulations and the best performing
setting has been highlighted in bold. Average of the UC (left) and CV (right) obtained as a function of the eSTDP

parameters: (MaxWeighteSTDP —x-axis) and LTD/LTP ratio (r
LTD/LTP
eSTDP —y-axis) in a network with: (a) only weight

scaling, (b) only intrinsic plasticity and (c) neither intrinsic plasticity nor weight scaling.
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(a)

(b)

(c)

Fig. A.5. eSTDP plasticity parameter exploration with four inhibitory neurons, four patterns and 40% of excitatory
neurons included in each pattern. Each circle represents the average over 20 simulations and the best performing setting
has been highlighted in bold. Average of the UC (left) and CV (right) obtained as a function of the eSTDP parameters:

(MaxWeighteSTDP —x-axis) and LTD/LTP ratio (r
LTD/LTP
eSTDP —y-axis) in a network with: (a) both intrinsic plasticity and

weight scaling, (b) only weight scaling, (c) only intrinsic plasticity and (d) neither intrinsic plasticity nor weight scaling.
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(d)

Fig. A.5. (Continued)

1650020-27

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

16
.2

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
02

/1
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.worldscientific.com/action/showImage?doi=10.1142/S0129065716500209&iName=master.img-273.jpg&w=477&h=140

