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The basal ganglia (BG), and more specifically the striatum, have long been proposed to play an essential
role in action-selection based on a reinforcement learning (RL) paradigm. However, some recent findings,
such as striatal spike-timing-dependent plasticity (STDP) or striatal lateral connectivity, require further
research and modelling as their respective roles are still not well understood. Theoretical models of spik-
ing neurons with homeostatic mechanisms, lateral connectivity, and reward-modulated STDP have
demonstrated a remarkable capability to learn sensorial patterns that statistically correlate with a re-
warding signal. In this article, we implement a functional and biologically inspired network model of
the striatum, where learning is based on a previously proposed learning rule called spike-timing-
dependent eligibility (STDE), which captures important experimental features in the striatum. The pro-
posed computational model can recognize complex input patterns and consistently choose rewarded ac-
tions to respond to such sensorial inputs. Moreover, we assess the role different neuronal and network
features, such as homeostatic mechanisms and lateral inhibitory connections, play in action-selection
with the proposed model. The homeostatic mechanisms make learning more robust (in terms of suitable
parameters) and facilitate recovery after rewarding policy swapping, while lateral inhibitory connections
are important when multiple input patterns are associated with the same rewarded action. Finally, ac-
cording to our simulations, the optimal delay between the action and the dopaminergic feedback is ob-
tained around 300 ms, as demonstrated in previous studies of RL and in biological studies.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Animals learn to choose actions among many options by trial
and error, thanks to the feedback provided by sparse and delayed
rewards. Reinforcement learning (RL) serves as a theoretical frame-
work for an agent, a system that acts based on received feedback,
to learn to map situations to actions. This state-action mapping
aims to maximize the performance of actions, mainly (but not ex-
clusively) considering how rewarding or punishing the conse-
quences of the actions are [52]. The basal ganglia (BG), a group of
forebrain nuclei, are posited to play a critical role in action-
selection based on RL [22,21,25,23]. However, the roles of recent
findings, such as striatal spike-timing-dependent plasticity (STDP)
models and striatal asymmetrical lateral connectivity, remain un-
clear. Investigating these interactions could improve our compre-
hension of the BG’s role in RL, potentially leading to the
development of more efficient bio-inspired reinforcement learning
agents.

This study aims to explore the impact of homeostatic mecha-
nisms and asymmetric lateral inhibitory connections on action-
selection in the striatum. We use the RL framework to gain insights
into the neural basis of decision-making and contribute to more bi-
ologically plausible basal ganglia models. Our model stands out
from previous models in several ways: it does not require a critic
or extra circuitry for a temporal difference signal, thereby simplify-
ing the model and reducing computational complexity; additional-
ly, it employs a spiking neural network with spike-time pattern
representation that adapts well to varying pattern complexities
in the pattern classification layer.

We propose a functional, biologically inspired striatum network
model that incorporates dopamine-modulated spike-timing-
dependent eligibility (STDE, [24] and asymmetric lateral connec-
tivity [6]. This model improves upon existing striatum models by
integrating homeostatic mechanisms, asymmetric lateral inhibito-
ry connections, and the STDE learning rule, capturing essential ex-
perimental features found in the striatum.
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In this article, we present a model that effectively processes
complex input patterns in the context of reinforcement learning.
We conduct multiple analyses to assess the interaction between
the learning rule, homeostatic mechanisms, and lateral inhibitory
connectivity patterns. By incorporating these elements, we strive
to develop a comprehensive and biologically plausible striatum
model that offers valuable insights. Our study examines the indi-
vidual and combined effects of these factors, shedding light on
the unique topology of the striatum network and its role in rein-
forcement learning tasks.

The main contributions and findings of this work are:

� A functional and biologically inspired network model of
the striatum that integrates dopamine-modulated STDE,
homeostatic mechanisms, and asymmetric lateral inhibito-
ry connectivity, providing a more comprehensive and bio-
logically plausible representation of the striatum’s
function.

� Analysis of the role of homeostatic mechanisms in making
learning more robust and facilitating recovery after rewarding
policy swapping.

� Investigation of the importance of lateral inhibitory connections
when multiple input patterns are associated with the same re-
warded action.

� The use of a spiking neural network with spike-time pattern
representation that scales well with different pattern complex-
ity, making the model suitable for a wide range of reinforce-
ment learning tasks.

� Demonstration that the optimal delay between action and
dopaminergic feedback occurs around 300 ms, which is consis-
tent with previous reinforcement learning and biological
studies.

� A model that does not require a critic, simplifying the
learning process and reducing the need for additional
circuitry.

1.1. Basal ganglia circuitry and striatal connectivity in decision making

The BG network is composed of several structures, grouped in
inputs [being the striatum the best known, and populated by
medium spiny neurons (MSN)], intermediate layers [the external
segment of the globus pallidus (GPe), and the substantia nigra
pars compacta (SNc)] and output [substantia nigra pars reticulata
(SNr)]. The information flows segregated through the BG circuits
[9,42]. It has been proposed that the BG process a large number
of cognitive streams or channels in parallel [23], each of them
representing a feasible action to be performed [51]. According
to recent research, this segregation through the entire cortico-
BG-thalamic loop shows a very high specificity, down to almost
neuron-to-neuron level [30,11]. Thus, it seems feasible to impact
behavior at different levels of detail. However, with the current
biological evidence it is not exactly known how the activation
of a channel maps to the corresponding behavior and we just as-
sume here that these channels involve a decision making
process.

The striatum, as the primary input of the basal ganglia, connects
to the SNr via direct and indirect pathways, which are traditionally
thought to promote and inhibit behavior, respectively. Each path-
way crosses the striatum through different subpopulations of
MSNs, expressing dopamine receptors D1 for the direct pathway
and D2 for the indirect pathway. Recent genetic and optical studies
on striatal circuits have allowed for testing classical ideas about the
functioning of this system, but new models are needed to better
understand the role of the striatum in learning and decision-
making [8].
2

1.2. Spiking neural networks: learning, reward modulation, and
striatal connectivity

In recent decades, the use of biologically plausible computa-
tional models composed of spiking neurons able to learn a target
function has demonstrated being increasingly successful [53,54].
These models use discrete-time events (spikes) to compute and
transmit information. As the specific timing of spikes carry rele-
vant information in many biological contexts, these models are
useful to understand how the brain computes at the neuronal de-
scription level. Combined with the use of local learning rules, these
models can be implemented in highly efficient, low-power, neuro-
morphic hardware [44]. Within this framework, learning from past
experiences can be achieved using the STDP learning rule, a synap-
tic model featuring weight adaptation that has been observed in
both biological systems [33] and the BG [10]. The STDP also was
demonstrated to be competitive in unsupervised learning of com-
plex pattern recognition tasks [37,16]. The complexity of the pat-
terns comes from their statistically equivalent activity level and
from being immersed within a noisy stream of hundreds or thou-
sands of inputs. These studies shown that an oscillatory stream
of inputs reaching a population of spiking neurons enables a target
post-synaptic neuron equipped with STDP to detect and recognize
the presence of repetitive current patterns [37]. The added oscilla-
tory drive performs a current-to-phase conversion: the neurons
that receive the most potent static current will fire the first during
the oscillation cycle. This mechanism locks the phase of the spike
time, facilitating the recognition of the previously presented
patterns.

However, STDP-based learning systems tend to use statistical
correlations to strengthen synaptic connections, resulting in the
selection of the most frequent patterns at the expense of the most
rewarding [16]. Thus, the STDP rule can be modified to drive the
learning of patterns that statistically correlate with a reward signal
[31,32]. In biological systems, unexpected rewards signal relevant
stimuli during learning by releasing dopamine (DA). More specifi-
cally, the reward signal is linked to the phasic modulation of
dopaminergic neurons in the SNc and ventral tegmental area
[47], that sends reinforcement signals to the striatal neurons. These
rewards do not need to happen instantly after the relevant stimu-
lus; they can be delayed seconds, resulting in the distal reward and
temporal credit assignment problems. In [31,32], the authors sug-
gest a reward-modulated STDP rule that enables a neuron to detect
rewarded input patterns lasting milliseconds, even if the reward is
delayed by seconds, by using the so-called eligibility trace. Also,
based on the eligibility trace, [24] developed a synaptic learning
rule called Spike-Timing-Dependent Eligibility (STDE) based on
physiological data that captures many features found in the biolog-
ical MSN of the basal ganglia. This model is more flexible than the
previous STDP-like rules as different learning kernels can be used
depending on the amount and type (reward or punishment) of re-
inforcement received. Although the authors did not include some
important BG features like the GPe nucleus or a cortico-striatal
loop, their model successfully learned to select an action channel
driven by stronger cortical input, based only on the timing of the
input and the reward signal.

Another relevant feature of the striatum is its connectivity. [6]
proposed a model of asymmetric lateral connectivity in the stria-
tum that tries to explain how different clusters of striatal neurons
interact and which role they play in information processing. This
model accounts for the in vivo phenomenon of co-activation of
sub-populations of D1 or D2 MSNs, which seems paradoxical as
each subpopulation projects to behaviorally opposite pathways
(direct and indirect, respectively). This structured connectivity pat-
tern is determined by lateral inhibition between neurons that be-
long to the same channel and between neurons within different
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channels but accounting for the same receptor type (D1 or D2). The
authors also include asymmetrical connections with more inten-
sive intra-channel inhibition from D2 to D1 neurons than in the op-
posite direction. This pattern resulted in synchronized phase-
dependent activation between MSN D1 and D2 neuron groups that
belong to different channels.

1.3. Contribution

All the previous ideas are important pieces of the process of
goal-oriented learning but further research is required as their re-
spective roles and how they complement each other are still not
well understood. The combination of the STDE rule within a net-
work with asymmetrically structured lateral inhibition has not
been studied before, and some relevant conclusions emerge from
this specific study. In this article, we design and study a functional
and biologically inspired model of the striatum. Our approach is
based on spike time representation of complex input patterns
and integrates dopamine modulated STDE and asymmetric lateral
connectivity, among other mechanisms. This model learns to select
the most rewarding action to complex input stimuli through RL.
The proposed model has been demonstrated to be capable of rec-
ognizing input patterns relevant for the task and consistently
choosing rewarded actions in response to that input. We per-
formed numerous analyses to measure and better understand the
interaction between the learning rule with homeostatic mecha-
nisms and the lateral inhibitory connectivity patterns. By measur-
ing the single and combined effects of these factors in the learning
process, we want to shed light on how the particular topology of
the striatum network facilitates the resolution of RL tasks.
2. Methods

Aiming to implement a RL framework in a biologically plausible
striatummodel, we started designing a task where the agent has to
learn how to map different input patterns into actions based on the
reward signal delivered by the environment. We implemented a
network model of the striatum capable of learning this task. This
system behaves like a RL agent and can solve action-selection
tasks.

The methods section is structured as follows: we first define the
neuron and synapse models, input pattern generation, and net-
works structures used in our experiments. Then we describe the
experimental design used with the network model and how we
measure its learning capability. In Supplementary Materials we al-
so explain both a previous experiment and a simpler model we
made to test the viability of the combination of oscillatory inputs,
STDE and homeostatic rules that we employed in the final network
model.

2.1. Computational models

2.1.1. Neuron models
We used conductance-based versions of the Leaky-Integrate

and Fire (LIF) neuron model [17] as it is computationally efficient
and captures certain biological plausibility. We use this model in
every layer of the network, but with different parameters. We clas-
sify the neuron types according to the layer they belong to: cortical
neurons for the input, striatal neurons (divided in two subpopula-
tions according to which DA receptor express, D1 or D2) for the
learning layer, and action neurons for the output. There is also a
dopaminergic neuron that receives the rewards and punishments.
The parameters used for each type were manually tuned to obtain
reasonable firing rates. For the cortical neurons we used a number
of spikes per input cycle (with 8 cycles per second) close to [37]
3

and [16] (see details about the input protocol in Section 2.1.2).
For the striatal neurons, we tuned the parameters to obtain a mean
firing rate of around one spike per second to be within biological
ranges [39] but with activity peaks of two or three spikes per input
cycle (16–24 spikes per second). The action neurons (an integrative
population that outputs the agent’s behavior) are tuned to fire ev-
ery input cycle if they receive enough stimulation from its channel
(at least two more spikes from D1 neurons than D2 neurons each
cycle). The dopamine neuron was tuned to have a firing range from
50 to 350 spikes per second, with these unrealistic values chosen
for performance (instead of simulating a bigger dopaminergic pop-
ulation). The parameters used for each neuron type are shown at
supplementary table 1.

2.1.2. Input and oscillatory drive
In the input generation procedure [37,16] we consider a trial as

a segment of time of the simulation where we present some input
stimuli to the network. The length of each trial is taken from a uni-
form random distribution between 100 and 500 ms. An input stim-
ulus represents a combination of 2000 input current values
conveyed one-to-one to a set of cortical neurons of the same size
(Fig. 8A). An input pattern is a combination of current values which
target precisely the same cortical neurons every time the input
pattern is presented for the entire simulation. For every time bin,
one or no pattern is presented. Only half of the cortical neurons
(1000) are pattern-specific when presenting a specific pattern,
while the other half receives random current values. The cortical
neurons specific for each pattern are selected at the initialization.
When no pattern is presented, all the cortical neurons receive ran-
dom current values. Two thousand current-based LIF cortical neu-
rons transform the input current levels into spike activity. These
neurons have a firing rate between 8 to 40 spikes per second due
to the sum of the input current values (ranged from 87% to 110%
of the cortical neuron rheobase currents) and an oscillatory drive
at 8 Hz feeding these neurons (with an amplitude of 15% of the
rheobase current of the cortical neurons). This oscillatory drive
turns the input encoding from analogical signal to phase-of-firing
coding [37] by locking the phase of the cortical spikes within the
oscillatory drive, as shown in Fig. 8B. By using these parameters,
the cortical neurons fire between 1 and 5 spikes per cycle.

2.1.3. Spike-timing-dependent eligibility (STDE) learning rule
We implemented a version of the STDE learning rule [24], a

phenomenological model of synaptic plasticity. This rule is similar
to STDP, but the kernel constants are DA-dependant (that is, differ-
ent values are defined for low DA and high DA values, and interpo-
lated for DA values in-between, as shown in Fig. 1 and
Supplementary Fig. 9Ai and Aii). STDE is derived from in vitro data
and predicts changes in direct and indirect pathways during the
learning and extinction of single actions. Throughout, we used
the following parameters and procedures unless we specified

otherwise. The kernel shape is defined by the parameters kSPKDA with
SPK 2 þ;�f g being the spike order pre-post for applying kþDA and
post-pre for applying k�DA, respectively, and DA 2 hi; lof g being the
high- or low-DA cases, resulting in four parameters in total:
kþhi; k

þ
lo; k

�
hi and k�lo. We obtained these learning kernel constant val-

ues by hand-tuning for both MSN D1 and D2 cases (see Supple-
mentary Fig. 9 and supplementary Table 2). As in the classic
STDP learning rule, the weight variation in STDE is calculated for
every pair of pre- and post-synaptic spikes and decays exponen-
tially with the time difference between the spikes (Fig. 1). We
use time constants s ¼ 32ms and the weights values are clipped
to 0;0:075½ �.

Our implementation of STDE uses elegibility traces that decay
exponentially to store the potential weight changes, similarly to



Fig. 1. Kernels used for STDE synapses of MSN D1 (top) and D2 (bottom), showing
the weight change depending on the time difference between pre- and post-
synaptic spikes and dopamine. Thick lines represent kernels at dopamine min-
imum, normal, and maximum values (red, black, and green, respectively). Thin lines
are interpolations of these values.
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[31]. Following [24] we have two different eligibility traces per sy-
napse, cþ and c� for spike pairs with positive and negative timing
respectively, updated for every pair of pre- and post-synaptic
spikes at times tj and ti as in Eqs. (1) and (2):

dcþ ¼ akþhi þ akþlo
� � � e

tj�ti
seli if tj 6 ti ð1Þ

dc� ¼ ak�hi þ ak�lo
� � � e�

tj�ti
seli if tj > ti ð2Þ
4

with a ¼ 1� a;a been a value dependent of DA that we define in Eq.
3, and seli been the eligibility trace time constant with a value twice
the length of the mean reward delay. Overall plastic change at a sin-
gle synapse is then the sum of contributions from both cþ and c�,
scaled by a learning rate factor g ¼ 0:002.

The level of DA in the system is determined by one neuron that
fires at high (and unrealistic) rates for computational simplicity,
representing a population of neurons from the SNc. This neuron
fires spontaneously at a baseline frequency of 200 Hz. The environ-
ment (i.e., the application of rewarding policies during the experi-
ment) injects positive (or negative) current in the dopaminergic
neuron when rewards (or punishments) are applied to the model,
resulting in the firing rate of this neuron ranging between 50 Hz
and 350 Hz. All plastic synapses share a global DA level d that de-
cays exponentially with temporal constant sda ¼ 20ms. For each
spike emitted by the dopaminergic neuron, d is increased by 1

sda
with 200-ms delay.

Our implementation of STDE uses the linear mixing function a
in Eq. (3), clipped to 0;1½ �, to smoothly morph between kernels
with low and high DA:

a ¼ d� dmin

dmax � dmin
ð3Þ

where dmin and dmax are the minimum and maximum values of DA
considered. We use this equation for computational efficiency in-
stead of the Naka-Rushton function used in [24] (the authors also
noted that this is not a requirement, as long as the mixing function
was increasingly monotonic and saturating). The function is bound-
ed to values of DA firing rate between 50 and 350 Hz, with the base-
line at 200 Hz.

2.1.4. Homeostatic mechanisms
During learning, in some cases, the neurons can stop firing in-

definitely due to a learning history leading to the wrong parame-
ters. Neuron activity can also die by sudden changes in the
reward policy, leaving the state of the synaptic weights ill (not rep-
resenting any stimuli and not getting enough input to fire by
chance). To recover neurons from this state, we added two differ-
ent homeostatic mechanisms, one at the synaptic level and one
at the neuron level. Although one or the other is enough to avoid
the ill-states, we saw in our tests that we recovered faster and
more reliably by using both.

The synapses implementing the STDE included a non-Hebbian
strengthening in response to every pre-synaptic spike. For each ar-
riving spike, the synaptic weight increases by Cpre ¼ g � 4 � 10�4.
This non-Hebbian strengthening is added to enable the recovery
of low-bounded synapses (e.g., after a rewarding policy switch).
Although the rewarding policy does not change in the network ex-
periment, this homeostatic mechanism also benefits the complete
network model learning (more details in Section 5.2.2 and Supple-
mentary Fig. 14).

In order to avoid neurons to become permanently silent during
learning, we include adaptive threshold to our neuron models
based on [15] according to the following equation:

dVth

dt
¼ �Vth � Eleak

sth
ð4Þ

where Vth represents the firing threshold at the current time, Eleak is
the resting potential of the neuron, and sth is the adaptive threshold
time constant. According to Eq. 4, in the absence of action potential-
s, the threshold progressively decreases towards the resting poten-
tial, facilitating neuron firing. When the neuron spikes, the firing
threshold increases a fixed step proportional to the constant Cth

as indicated in Eq. 5, making neuron firing more sparse.



Á. González-Redondo, Jesú. Garrido, F. Naveros Arrabal et al. Neurocomputing 548 (2023) 126377
dVth ¼ Cth

sth
ð5Þ
2.1.5. Striatum network model
The network model of the striatum (Fig. 3A) contains two chan-

nels (channel A and channel B, each one representing a possible ac-
tion). Every channel contains two same-sized subpopulations (D1
and D2 neurons, respectively) of striatal-like neurons (in total, 16
neurons per channel) and one so-called action neuron that inte-
grates excitatory activity from D1 neurons and inhibitory activity
from D2 neurons. This design simplifies the biological substrate
in which all MSN are inhibitory, but we implemented the network
computation by considering the net effect of each neuron type on
behavior. Biological MSN D1 neurons inhibit SNr, which promotes
behavior, and MSN D2 neurons inhibit GPe, which, in turn, inhibit
SNr with the total effect of decreasing behavior (Fig. 3A).

Our striatum model implements lateral inhibition within each
MSN D1 population, within each MSN D2 population, between
MSN D1 and MSN D2 populations within the same channel, and
between the MSN populations associated with different action
channels. Inspired by [6], we used an asymmetrical structured pat-
tern of connectivity (Fig. 5E in [6], and adapted here in Fig. 2). Fol-
lowing this connectivity pattern, we added lateral inhibition
between neurons that belong to the same channel and between
those that belong to different channels but use the same dopamin-
ergic receptor D1 or D2 (with stronger inhibition from D2 to D1
neurons than in the opposite direction). Since the small size of
the network under study and the small weight of the D1 to D2
MSN connections, the overall contribution of these connections
was neglectable, so we decided not to include them in our simula-
tions as we see no significant impact on previous simulations.

The environment generates the reinforcement signal based on
comparing the chosen and the expected action and then delivers
it to the dopaminergic neuron. Rewards are excitatory, and punish-
ments are inhibitory inputs to this neuron. The dopaminergic mod-
ulatory signal is global and delivered to every STDE connection
from cortical layer to striatal neurons (Fig. 3A). It is important to
note that this model does not implement a critic (commonly used
in actor-critic frameworks [52]), so there is no reward prediction
error signal.

2.2. Experimental design

We first validated the proposed learning mechanisms with a
simpler network model of only one neuron and a easier experi-
mental task, as can be seen in Supplementary Methods 5.1 and
Supplementary Results 5.2.

The action-selection task used to test the model (Fig. 3B) works
as follows: the agent has two possible actions to choose, A or B. An
Fig. 2. Connectivity pattern used for the lateral inhibition, inspired on [6]. Two
channels (action A and action B) are shown, each with two populations of D1 and
D2 MSN.

5

action is selected if the activity balance of its D1 and D2 neurons is
biased to D1 in two spikes at least in one cycle (making the corre-
sponding action neuron spike). The agent can do none, both, or any
of them at a time. The input stream contains five different non-
overlapping input patterns, each one presented 16% of the time
(80% in total). The policy used to give rewards (excitation) and
punishments (inhibition) to the agent (dopaminergic neuron) is
the following. When pattern 1 or 2 is present, the agent is reward-
ed if action A is selected (action A neuron fires during the pattern
presentation and action B neuron does not fire) but punished if ac-
tion B is selected. When pattern 3 or 4 is present, the agent is re-
warded if action B is selected but punished if action A is selected.
When pattern 5 is present, the agent is punished if it selects action
A or B. This policy applies no punishment or reward to the agent
during noisy inputs, whatever the action taken is. In case of spiking
both action neurons during a reinforced input, the network is
punished.

2.3. Performance measurement

In the action-selection task we measure the performance of the
models by calculating the percentage of correct action choices (i.e.
the learning accuracy). This measure is widely used in classifica-
tion problems when the objective is to describe the accuracy of a
final map process [50]. To do so, for each pattern presentation
we store the rewarded (expected) action in response to the pre-
sented pattern, and the finally selected (chosen) one during that
pattern presentation. We only consider in the calculation those tri-
als in which some reward or punishment can be delivered, ignoring
those intervals with no repeating patterns conveyed to the inputs
(only noisy inputs). We consider that an action has been taken if
the corresponding action neuron has spiked at least once during
the pattern presentation. Conversely, we consider that no action
has been taken if none of the action neurons spikes during the
same duration. In order to obtain an estimation of the temporal
evolution of the accuracy we use a rolling mean of the last 100
values.
3. Results and discussion

We did extensive testing of the learning mechanisms we pro-
posed. Some of these results demonstrate that the combination
of STDE learning rule and homeostatic mechanisms allow learning
(and re-learning) of rewarded patterns, or that there is no effect of
the reward delay and the frequency of the input pattern on the
learning process, among others. However, as they are not the main
concern for this article, they are placed in the Supplementary Re-
sults 5.2 section for further examination.

The main results and discussion are structured as follows: we
first show the general behavior of the network. Then we study
the effect of the lateral connectivity pattern on the performance
and the way neurons are processing information. Finally, we put
our results in context by comparing our model with previously
proposed models in the literature.

3.1. General network behavior

During the simulation of the action-selection task, each action
group neuron becomes overall active in response to the presenta-
tion of the associated patterns as shown in the raster plots
(Fig. 3C and D) and the activity balance for the action neuron
groups (Fig. 3E), producing mainly dopaminergic rewarding
(Fig. 3F). The action accuracy reveals steady-state performance
after 200 s of simulations (Fig. 3G). According to these results,
our combination of STDE learning rule [24] with homeostatic



Fig. 3. Cortico-striatal network solving a RL task. A. Structure of the network. See Section 2.1.5 for a detailed explanation. B-F. The activity of the network during the last 5 s of
simulation. Background color indicates the reward policy (yellowish colors, action A is rewarded and B is punished; bluish colors, action B is rewarded and A is punished;
grey, any action is punished). B. Input pattern conveyed to the cortical layer. C. Raster plot of the channel-A action neurons. Yellow dots represent MSN D1 spikes, and orange
dots are MSN D2 spikes. D. Raster plot of channel B. Cyan dots represent MSN D1 spikes, and dark blue dots are MSN D2 spikes. E. Action neuron firing rates. The middle
horizontal line represents 0 Hz. Action A and B activity are represented in opposites directions for clarity. Action A neuronal activity increases in yellow zones while action B
neuronal activity in cyan intervals. F. Firing rate of the dopaminergic neuron (black line). Dotted horizontal lines indicate the range of DA activity considered: black is the
baseline, green is the maximum reward, and red represents the maximum punishment. Dots indicate rewards (green) and punishment (red) events delivered to the agent. G.
Evolution of the learning accuracy of the agent, see Section 2.3 for further details. The dotted line marks the accuracy level by chance.
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mechanisms and an oscillatory input signal in a cortico-striatal
model learns to accurately select the most rewarding action.

The way our network learns to associate the corresponding in-
put stimulus with sub-populations of D1 and D2 neurons in chan-
nel A or channel B is the following: If the agent takes the right
action for a specific input pattern, the environment delivers a re-
ward with some delay (high DA level in Fig. 3F). This reward poten-
tiates the synapses between the cortical layer and the action-
associated D1 sub-population, resulting in more frequent firing.
On the other hand, if the agent takes a wrong action, then it re-
ceives a punishment sometime later (low DA level in Fig. 3F). This
punishment weakens the synapses from the cortical layer to the
action-associated D1 sub-population while strengthening the cor-
responding synapses to the D2 (inhibitory) sub-population of the
same channel. This learning process makes the agent stick to the
rewarded action and switch to a different one when punished.
For the specific case when the environment punishes any action
during a stimulus presentation, both D2 sub-populations increase
their activity, and both action neurons remain silent.

The proposed model shows how combining two complemen-
tary dopamine-based STDE learning rules (Fig. 1) can facilitate
the association between sensorial cortical inputs and rewarded ac-
tions with arbitrary rewarding policies. Previously, the STDE rule
had been shown to be capable of learning to select an action chan-
6

nel driven by stronger cortical input [24], and here we show that
this rule can also be used to learn inputs defined by the specific
timing of their spikes (as all the inputs have the same average fir-
ing rate). This represents a higher complexity task and illustrates
how STDE can be efficiently used for spike time pattern
representation.

The model also is completely bioplausible, as all the mecha-
nisms used have been described in biological systems: DA induces
bidirectional, timing-dependent plasticity at MSNs glutamatergic
synapses [49], in vitro pyramidal neural recordings are consistent
with simulations of adaptive spike threshold neurons, and they
lead to better stimulus discrimination than would be achieved
otherwise [27], and rat hippocampal pyramidal neurons in vitro
can use rate-to-phase transform [38]. Detailed discussion on the
role of the homeostatic mechanisms can be found in Supplemen-
tary Materials.

3.2. Effect of lateral inhibition patterns and task complexity

Once we have demonstrated how the striatal network can sup-
port RL, we wondered to what extent the connectivity pattern of
the lateral inhibition in the striatum could impact the learning ca-
pabilities. So that we extensively explored different versions of
connectivity.



Fig. 5. Effect of the lateral inhibitory connectivity on the performance during the
normal RL task. The curves represent the mean accuracy and the shaded areas
represent the standard error (n = 30). Four different configurations are tested,
depending on the presence of two types of lateral connectivity: intra- and inter-
channel inhibition. The horizontal dotted line represents the accuracy obtained by a
random agent with no learning mechanisms.
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We first study if there is any relationship between the connec-
tivity pattern and difficulty of the task. We organized the lateral in-
hibitory connections in two groups: intra-channel (inhibitory
connections from D2 MSNs to D1 MSNs within the same channel)
and inter-channel (inhibitory connections between D1 MSNs of
different channels, and between D2 MSNs of different channels).
We obtained four possible subsets of connectivity patterns by
keeping or removing each connection type (Fig. 2). We used three
difficulty levels for the task: easy, normal and hard. The easy task
uses only one stimulus associated with each action (stimulus 1
to action A, stimulus 2 to action B, stimulus 3 to no action). The
normal task uses two stimulus per action, and one no-go stimulus.
The hard task uses four stimuli per action, and two no-go stimuli.

The results of the easy version of the experiments are shown in
the Fig. 4. The models without inter-channel inhibition work
worse, as they stabilize with lower values of accuracy. The models
with inter-channel inhibition seem to reach a similar level of accu-
racy but the intra-channel inhibition seems to reduce the learning
rate.

In the normal version of the task, we again obtained the best
learning performance when using the inter-channel lateral inhibi-
tion with asymmetrical structured connection pattern, and the dif-
ference increased. In this case, there is no apparent effect in of the
intra-channel lateral inhibition in this task (Fig. 5). According to
our simulations, lateral inter-channel inhibition facilitates the
emergence of one action-related channel over the other one in a
winner-take-all manner, as expected.

We saw in previous experiments that the inter-channel lateral
inhibition is always increases accuracy, so we will use it always
in the following tests. In the hard task we obtained small but sig-
nificant differences: The accuracy of the network improves faster
with the intra-channel lateral inhibition (see Fig. 6). Also, appar-
ently the network with the intra-channel inhibition settled in a
more stable regime as it maintains its performance, compared with
the network without this intra-channel inhibition which slowly
degrades (Supplementary Fig. 13). The results so far suggest that
both connectivity patterns contribute to a reliable action-
selection paradigm.
Fig. 4. Effect of the lateral inhibitory connectivity on the performance during a
simpler version of the RL task. The horizontal dotted line represents the accuracy
obtained by a random agent. The curves represent the mean and the standard error
of the mean of the evolution of each agent during the task (n = 5).

Fig. 6. Effect of the intra-channel lateral inhibitory connectivity on the performance
during a harder version of the RL task. The horizontal dotted line represents the
accuracy obtained by a random agent. The curves and the filling color represent the
mean, the standard error of the mean, respectively, of the evolution of each agent
during the task (n = 150), simulated for 500 s.
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Taking these results together, it seems that when we use several
stimuli associated with each action, intra-channel inhibition im-
proves the RL action selection task. However, when only one stim-
ulus is associated with each action, this intra-channel inhibition
does not impact learning performance. When compared with the
results in Fig. 5 and 6, it seems that the intra-channel lateral inhi-
bition improves the learning capabilities only with a harder task,
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but when the task is too simple then the intra-channel connection
increases the learning time.

We also explored the effect of connectivity patterns of lateral
inhibition different from the proposed by [6], by adding or remov-
ing lateral connections within a channel, within each subpopula-
tion, and between subpopulations of the same channel. All
variations from the original resulted in reduced learning perfor-
mance (Supplementary Fig. 15). In this Figure, the curve #5 repre-
sents the network with both lateral inhibition in D1 layer and D2
layer, as well as intra- and inter-channel lateral inhibition. This
structure (similar to the one proposed by [6] obtains the best
accuracy.

3.3. Effect of intra-channel lateral inhibition on neuronal specialization

Intra-channel inhibition seems to facilitate learning in more
complex tasks, possibly because it enhances neuron specialization.
We saw a strong reduction of correlation at time difference dt ¼ 0
between action A and B D1 sub-populations caused by intra-
channel inhibition (data not shown), but this does not seem to jus-
tify the improved accuracy for more complex tasks.

Then, we hypothesized that intra-channel inhibition could en-
courage neuron specialization to specific cortical patterns. We test-
ed this idea by analyzing the preferred stimuli for each neuron
after the learning process (Fig. 7), and obtained the opposite result:
the intra-channel lateral inhibition affects D1 neurons by forcing
them to share more evenly their activity over several stimuli, in ad-
dition to reducing their average activity. This is in contrast with the
network without intra-channel lateral inhibition, where the activ-
ity is more focused on the favorite stimuli and has higher mean
activity.

According to these results, although individual neurons of the
network with intra-channel inhibition have less precise represen-
tation of individual sensorial stimuli, these models have higher
precision to associate rewarding actions. This can be explained as-
suming some sparse representation of the stimuli, where the si-
multaneous firing of several (but not many) neurons are needed
to indicate the presence of an input stimuli. This more sparse rep-
resentation emerges due to the combination of stronger inhibition
and the homeostatic mechanisms: a neuron avoids firing when it is
inhibited, so the homeostatic mechanisms tend to compensate for
this activity reduction by increasing its chances to fire in response
to several stimuli. This sparse representation has been suggested to
Fig. 7. Effect of the intra-channel lateral inhibitory connectivity on the firing rate
pattern on their preferred stimuli of D1 neurons. Higher and more specialized firing
patterns occur in networks without intra-channel lateral inhibition, while more
sparse representations occur in networks with it. Lines and shaded areas represent
mean and 95% confidence intervals of the mean (n ¼ 150), respectively.
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facilitate sensorial pattern recognition in other brain areas, such as
the cerebellar cortex, the mushroom body, and the dentate gyrus of
the hippocampus [7].

In the context of our model, the sparse representation due to
intra-channel inhibition plays a role in the action selection process,
which can be seen as a form of classification. Here, the goal is not to
classify stimuli per se, but to assign stimuli to appropriate actions.
The sparse coding helps to achieve more efficient and robust action
selection by reducing the overlapping between representations of
different sensorial states, minimizing interference, and enabling
more reliable decision-making.

3.4. Comparison with previous models of reinforcement learning and
basal ganglia

We presented a point-neuron model of the BG that can solve
complex action-selection tasks using a RL paradigm. We do so by
using multiple mechanisms proposed in the literature: the STDE
learning rule that implements synaptic modification in cortex-
MSN connections [24], combined with homeostatic mechanisms
[15] and an oscillatory input signal [37,16] in a network with
asymmetrical structured lateral inhibition [6] can rapidly and con-
sistently learn to detect the presence of rewarded input patterns.
These processes have been described in biological systems and
here proved to be robust.

Simpler STDP-like rules have been used for RL tasks [31,32], but
they were employed in simpler networks, single neurons, and sim-
ple tasks. Beyond the state-action mapping role proposed in this
article for the striatum, other theories exist about the action deci-
sion process. However, computational models of BG in the litera-
ture have considerably evolved during the last two decades [46],
and there is still no consensus about how to achieve goal-
oriented learning in a BG model. Previous models ranged from
those with action-selection features but no learning
[2,18,29,35,3,23,48,13,45,4] (but see [12]) to simple forms of learn-
ing, with RL [5], rate-based learning rules [26], or based on modu-
lated STDP with eligibility traces [28,24,1]. These models
considered direct and indirect pathways (as ”selection” and ”con-
trol” routes, respectively), composed of MSN D1 and D2 striatal
neurons controlling GPe and SNr. Many models assume that the
BG work as an actor-critic model [5,41], and actor-critic frame-
works have been used for RL tasks like maze navigation
[14,43,55] and cartpole [14]. More biologically-constrained models
of the BG have been proposed to explain the origin of diseases like
Parkinson’s disease [34] and the role of specific interneurons [20]
or pathways [19] during action-selection. Recent accumulation-
to-bound models describe the decision process as an accumulation
of evidence for each alternative action until a decision threshold is
exceeded in one of these actions [40]. It would be interesting to ex-
plore how these models could be incorporated with the proposed
model, potentially requiring additional brain areas. In this regard,
some models incorporate recurrent activity loops with the cortex
through the thalamus [36].

Moreover, we acknowledge that similar models can already
deal with more complex action-selection tasks than the one used
in this work, such as cart-pole, inverted pendulum, or simple
mazes [14]. However, there exist some important differences be-
tween their model and the one proposed in this article. First, our
network does not include a critic. Second, their learning rule re-
quires a temporal difference (TD) signal that would need additional
circuitry. Third, their model requires an additional place-cell layer
with unsupervised learning to represent complex input patterns.
However, it remains as a future work to embed the network model
into a closed-loop experimental setup requiring continuously grad-
ed output (instead of selecting an action in a discrete set of possi-
bilities). This way, the model could deal with a larger set of RL
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tasks. In our case, we have integrated a spiking neural network
with spike-time pattern representation that scales well with differ-
ent patterns complexity at the pattern classification layer. Future
work will explore how our model could be extended for such com-
plex action control frameworks.

4. Conclusion

In this article we tested the respective roles in learning of the
different mechanisms used during our simulations: homeostatic
mechanisms make the neurons change their response to compen-
sate for long-lasting changes in the input level, making learning
faster and more robust to the configuration. The asymmetrical lat-
eral inhibition consistently outperformed other connectivity con-
figurations. By adding intra-channel lateral inhibition to the
network model, we induced the channels to generate a sparse rep-
resentation of each stimulus relevant for the task. This made the
network less prone to errors as the model had to recruit more neu-
rons to take an action. Lastly, by segregating striatal and action
neurons in independent channels for each action and incorporating
MSN D1 (Go neurons) and MSN D2 (No-Go) sub-populations with
different learning kernels, the model effectively learned arbitrary
mappings from sensorial input states to action output in a two-
choice action-selection task. MSN D1 neurons and MSN D2 neurons
cooperatively facilitated action selection with contrary effects;
MSN D1 neurons learned to potentiate preferred actions while
MSN D2 neurons learned to inhibit non-preferred actions.
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