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Abstract-This paper presents how a plausible cerebellum

like architecture can abstract corrective models in the 

framework of a robot control task when manipulating objects 

that significantly affect the dynamics of the system. The 

presented scheme is adequate to control non-stiff-joint robots 

with low-power actuators which involve controlling systems 

with high inertial components. We evaluate the way in which 

the cerebellum stores a model in the granule layer, how its 

microstructure can efficiently abstract models and deliver 

accurate corrective torques for increasing precision during 

object manipulation. Particularly we study how input sensory

motor representations can enhance model abstraction 

capabilities during accurate movements, making use of 

explicit (model-related input labels) and implicit model 

representations (sensory signals). 

Finally we focus on how our cerebellum model (using a 

temporal correlation kernel) properly deals with transmission 

delays in sensory-motor pathways. 

Keywords-Spiking Neuron, Cerebellum, Adaptive, 

Simulation, Learning, Robot, Biological Control Systems 

I. INTRODUCTION 

Controlling fast non-stiff-joint robots accurately with low 

power actuators is a difficult task which involves high 

inertia. Biological systems are in fact non-stiff-joint 

"plants" driven with relatively low-power actuators. These 

biological systems have developed smart "model 

abstraction" capabilities through evolution. In this way, the 

control commands of biological systems are generated 

taking into account the "plant model" (for instance arm + 

object). In the framework of accurate control with a large 

number of degrees of freedom (DOFs), extracting efficiently 

models from explorative manipulation, storing them 

without interference with other previously acquired ones 

and retrieving these models accurately for each case are 
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capabilities in which biological systems are still beyond 

current cutting edge control technology. With regards to 

machine learning approaches, specific models are being 

developed to address these hard tasks [1-4]. 

If the control scheme is based on accurate kinematic and 

dynamic models, and the dynamics of the plant changes 

(manipulating tools and objects will modifY the base 

model), this will lead to significant distortions along the 

desired trajectory, affecting the final achieved accuracy [5-

7]. Therefore, these systems are required to be adaptive to 

tune the corrective models for specific object or tool 

manipulation [8]. 

The cerebellum seems to play a crucial role in this model 

abstraction task [9]. But how this is supported by actual 

network topologies, cell models and adaptation properties is 

an open issue. We have addressed the study of how this 

model abstraction task can be achieved with a cerebellum

like architecture based on spiking neurons. Lately, last 

generation simulation tools [10-14] allow the definition and 

simulation of nervous centers of certain complexity in the 

framework of biologically-relevant tasks. This allows 

addressing studies in which function and structure of 

nervous centers are conjointly evaluated to better 

understand how the system operation is based on cell and 

network properties. 

In previous works we evaluated a cerebellar model in 

reaching point task [15] and a simple smooth pursuit task 

[16]. In this paper we evaluate how an input configuration 

encoding inherent propioception signals along the trajectory 

and also inputs from other sensory-systems (such as vision) 

are conjointly used in an object manipulation task. 

We also study how an adaptive cerebellum-like module 

using a basic temporal-correlation kernel (including long

term depression (LTD) and long-term potentiation (L TP) at 

parallel fiber-Purkinje cells synapses) can build corrective 

models to compensate deviations in the robot trajectory 

when the dynamics of the controlled plant is altered and 

also can deal properly with transmission delays in sensory

motor pathways. 



I. METHODS 

For extensive spiking network simulations we have 

further developed and used an advanced event-driven 

simulator based on lookup tables (EDLUT) [10] [15]. For 

the robot plant simulation we have implemented an 

interface between the simulator of the LWR (Light-Weight

Robot developed at DLR [17]) and the control loop. In fact, 

in this application field it is of interest to develop control 

schemes for relatively fast movements at reasonable 

accuracy and which adapt when controlling different tools. 

For the sake of simplicity, in our experiments we use a 

simulator of this robot in which we have fixed some joints 

to reduce the number of actual joints to three, limiting the 

num ber of degrees of freedom. 

A. Arm simulator 

We have integrated the robot plant simulator of the LWR 
(Light-Weight-Robot developed at DLR [17]) with the 
afterwards described control loop. The simulated-robot
plant physical characteristics can be dynamically modified 
to match different contexts. The LWR robot is a 7-DOF arm 
composed of revolute joints. In our experiments we used the 
first (we will refer to it as ql), second (q2) and fourth joint 
(q3) and keep the others fixed. The task for the experiments 
with LWR robot is to follow an eight-like trajectory. This is 
a rather standard benchmarking trajectory. The inverse 
kinematics is computed to obtain a smooth trajectory in 
joint angle space. The trajectories of individual joints have 
enough variation so that a sufficiently rich movement will 
be executed. This trajectory allows studying the platform 
dynamics [18] [19]. 

This robot is specially suited for interactions with 
humans in unstructured, daily environments. In these 
scenarios, it is of specific interest the use of robots based on 
low-power actuators in order to reduce the danger for 
humans in case of malfunctioning. Furthermore, the 
accuracy in position and trajectory is not fully exploitable 
because of the uncertainty in the actual positions of the 
robot itself and the unstructured scenarios. 

B. Control scheme 

There has been a wide range of cerebellar motor-control
system approaches proposed in the literature. 

Fig. I. Control loop. The adaptive cerebellar model delivers add-on 
corrective actions to compensate for deviations in the base dynamic and 
kinematic plant model when manipulating objects. 

This is a very active research field (for a review the 
reader is referred to [20]). 

Lee Miller [21] proposes a cerebellar control system 
based on a predictive signal (supplied by the cerebellum) 
with the aim of giving a progressive and proper motor 
control commands. According to this theory we developed 
our cerebellar control-loop model, a feedback cerebellar 
control. 

In our control loop (see Fig 1) the desired arm states 
(robot end-effector position at each time) are generated by 
the trajectory planner to follow the desired trajectory 
(smooth pursuit). This trajectory in Cartesian coordinates is 
translated into joint coordinates (positions (q), velocities 
(qd) and accelerations (qdd)) by the trajectory generator (a 
crude inverse kinematic model representing the output of 
motor cortex and other motor areas) in our experiment the 
robot follows the trajectory described in expression (1). 
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Fig. 2. Three-joint periodic trajectories describing 8-shape movements 

a) Angular coordinates of each joint of the LWR robot b) 3D view of the 
robot end-effector trajectory in Cartesian coordinates. 
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These desired arm states in joint coordinates are used at 
each time step to compute a crude torque commands (crude 
inverse dynamic robot model). They are also used together 
with the contextual information (related to the manipulated 
object) as input to cerebellum which produces the predictive 
corrective commands (feorree/il'e) which are added to these 
crude torque commands (fdesired) . 

Total torque is delayed (on account of the biological 
motor pathways) and supplied to the robot plant. The 
difference between the actual robot trajectory and the 
desired one is also delayed and used by the teaching signal 
computation module to calculate the inferior olive (fO) 
cerebellum input signal. This signal will be used by the 
cerebellum to adapt its output as described in Learning 
Process section. 

Industrial applications with high latency sensors require 
the use of standard techniques to explicitly compensate 
these delays. Nevertheless these techniques seem to have a 
poor performance in this kind of problems [22]. In 



biological systems it is thought that the cerebellum solves 
this problem. The cerebellum model described here 
compensates the sensory-motor delay by means of the 
temporal-correlation kernel (see Results and Learning 
Process section). 

C. Cerebellum-arm Interface 

The analog signals representing the cerebellum input 
(desired arm position, velocity and contextual information. 
See Cerebellum Model section) are continuously translated 
into mossy fiber (MF) activity. They are divided into groups 
and each group encodes an input variable. Each MF of a 
group is associated to a specific value range of an input 
variable (receptive field). A MF is modeled as a leaky 
integrate-and-fire neuron whose input current is calculated 
using overlapping radial basis functions (RBF) which 
account for the receptive fields. Therefore, a MF fires when 
the input variable takes a value covered by its corresponding 
RBF. Thus, each group of MF covers the total working 
range of state variables (spatio-temporal population coding). 

D. Spiking neuron simulation 

The cerebellum module consists of a network which 
contains a considerable amount of spiking neurons (See 
Cerebellum Model section). To simulate this network 
efficiently we have opted to use EDLUT simulator. This 
application software is an event-driven simulator which 
allows the fast network simulation of relatively-complex 
neural models through an innovative method: Each neural 
model included in the network (usually defined by a set of 
differential equations which govern the neural state) is 
simulated for every possible neural state and the consequent 
evolution of each neural state variable is stored in lookup 
tables. Then, when a simulation of a network containing 
these models is done, it can be performed without requiring 
a computational-costly numerical procedure for solving the 
differential equations defining the neural model. 

This computational efficiency permits this powerful 
simulation tool to be applied in complex tasks involving 
robot-control where massive spiking cerebellar architectures 
are evaluated. In comparison with others simulation tools, 
EDLUT[lO-ll] is intermediate between the very detailed 
simulators, such as NEURON[12] or GENESIS[13] and 
the event-driven simulation schemes based on simple 
analytically described cell dynamics such as SpikeNET[14]. 
Different neuron models can be used (for a comparative 
study see [23]. We have chosen the neuron model described 
in the next sections because it captures certain biologically 
plausible features [Table 1] 

E. Neural Models 

The simulated spiking network is composed by two 
different cell types. 

The used cell models are a modified version of the spike
response model (SRM) [24-25] with decaying synaptic 
conductances. Thus, the neuron models account for 
dynamic synaptic conductance rather than simply for 

constant current flows, providing an improved description 
over simpler I&F models. 

The synaptic conductance has been modelled as decaying 
exponential functions triggered by input spikes as stated by 
the expressions (2): 

g exc 
(t) 

= { (t ). 0 -(t-to }/Texc gexc 0 e 
(2A) 

(2B) 

Where gexc and ginh represent the excitatory and 

inhibitory synaptic conductance. r exc and r inh represent 

the correponding synaptic time constants. This exponential 
representation has several advantages. First, it is an 
effective representation of realistic synaptic conductances 
(the improvement in accuracy from the next most complex 
representation, a double-exponential function, is hardly 
worthwhile [10]). Secondly, each synaptic conductance type 
requires only a single state variable, because synaptic inputs 
through several synapses of the same type can simply be 
summed recursively when updating the total conductance if 
they have the same time constants. Therefore, when an 
input spike is received at time t, for example, through an 
excitatory synapse, its corresponding conductance is 
updated as described in expression (3): 

gexc(post-spike) (t) = Gexc,j + gexc(pre-SPike) (t) (3) 
( G exc,) is the weight of synapse j; a similar relation holds 

for inhibitory synapses). 
In our simulations, the synaptic parameters have been 

chosen to represent excitatory AMPA-receptor-mediated 
synapse time constants and inhibitory GABAergic synapse 
time constants of cerebellar granule cells [26-29]. Note that 
different synaptic connections in different cells might have 
different parameters. 

The membrane potential (Vm) at time t, is defined by the 
differential equation (4): 

Where the conductances g exc (t) and ginh (t) integrate 

all the contributions received through individual synapses, 
Grest represents the resting conductance and Eexc. E;nh and 
Erest represent the corresponding reversal potentials. 

Equation (4) is amenable to numerical analysis. In this 

way, we can calculate Vm, g exc and ginh for a given time 

after a previous neural state or input spike. The firing time 

(tf) is the time when the membrane potential (Vm) reaches 



TABLE I 
PARAMETERS OF THE DIFFERENT CELL TYPES 

USED IN SIMULATED NETWORK. 

Parameter 
Refractory period 

Membrane capacitance 
Total excitatory peak conductance 
Total inhibitory peak conductance 

Threshold 
Resting potential 

Resting conductance 
Resting time constant (Tm) 

Excitatory-synapse time constant (T<xc) 
Inhibitory-synapse time constant (Tinh) 

Granule Cell 
Ims 
2pF 

I nS*IOO 
InS*200 
-40mV 
-70mV 
0.2nS 
IOms 

0.5ms 
IOms 

Purkinje Cell 
2ms 

400pF 
I.3nS*1 75000*1 0% 

3nS*150 
-52mV 
-70mV 
16nS 
25ms 
0.5ms 
I.6ms 

Parameters obtained from the following papers: GrC [30-34] and PC [35-38]. 

the firing threshold eV:h) ; an output spike is em itted. It can 

be calculated from the membrane potential evolution. 
Table 1 shows the equation parameters corresponding to 

the two neural models used in the simulated cerebellum. 

F. Cerebellum model 

The proposed cerebellar generic architecture is shown in 

Fig. 3. This cerebellum model is composed by the following 

layers: 

Excitatoryconnections---+ I 

Inhibitory connections 
I 

Granule Cells [1500] 

�� ... ... � 
Joint related Mossy 

with context signal 

f---------'i 
Deep Cerebellar Nuclei Cells [24] 

Fig. 3. Cerebellum model diagram. Inputs encoding the movement 
(desired and actual arm states) are sent (upward arrow) through the 
mossy fibers to the granular layer. These inputs encode the desired and 
actual position and velocity of each joint along the trajectory and also 
contex-related information. Inputs encoding the error are sent (upper 
downward arrow) through the inferior olive (10). Cerebellar outputs are 
provided by the deep-cerebellar-nuclei cells (DCN) (lower downward 
arrow). The DCN collects activity from the mossy fibers (excitatory 
inputs) and the Purkinje cells (inhibitory inputs). The outputs of the 
DCN are added as corrective torque in the control loop of F ig.l 

Mossy fibers (MF): This layer carries explicit contextual 

information and the desired and actual robot joint position 

and velocity. (For an explanation of the translation from 

this information into cell activity, see Cerebellum-arm 

Interface section). 

This input layer has been modelled according to an 

Explicit and Implicit Context Encoding Approach (16 fibers 

encode the context information and 240 fibers encode the 

joint-related information). The fibers in charge of the joint

related information encoding have been divided into 12 

groups of 20 fibers: 3 groups encode desired joint positions 

(1 group per joint), other 3 groups encode desired joint 

velocities (1 group per joint), other 3 groups encode actual 

joint positions and the remaining 3 groups encode actual 

joint velocities. The explicit contextual information is 

encoded by 2 groups of 8 fibers (see Fig. 4). 
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Fig. 4. Granular layer model Explicit and implicit context encoding 
approach. Each granule cell receives an explicit context signal and three 
randomly-chosen mossy fibers from current and desired positions and 
velocities 

Granular layer (GR) (1500 cells): A simplified (i.e. 

notice the lack of Golgi cells and interneurons) granular 

layer of the cerebellum has been designed with the purpose 

of preprocessing the input of the Purkinje cells (PC). The 

information supplied by MF is transformed into a sparse 

representation that facilitates discrimination of very similar 

inputs [39]. In this large GR layer, each cell receives four 

excitatory connections. Three connections from randomly

chosen joint-related MF groups and the other one from a 

context-related MF. Parallel fibers (PF) are the output of 

this layer. The abstracted corrective models are learned and 

stored in the weights of the PF-PC connections. 

Climbing fibers (CF) (48 fibers): This layer is 

composed of 6 groups of 8 climbing fibers. It carries the 

error signals coming from 10 PCs. This 10 output encodes 

through spike trains the teaching signal used for supervised 

learning in the PF-PC connections. 

Purkinje cells (PC) (48 cells): They are divided into 6 

groups of 8 cells. Each GR cell is connected to 80 per cent 

of the PCs. They also receive the teaching signals from the 

CF. 

Dee�erebellar-nuclei cells (DCN) (24 cells): The 

cerebellum model output is generated by 6 groups of these 

cells whose activity provides corrective torques for the 

specified arm state. The corrective torque of each joint is 

encoded by a couple of these groups, one group is dedicated 

to generate positive torques (agonist) and the other one is 

dedicated to generate negative ones (antagonist). Each 

neuron group in the DCN receives excitation from every 



MF and inhibition from the two corresponding PCs. In this 

way, the sub circuit PC-DCN-IO is organized in six 

microzones; three of them for positive joint torques (one per 

joint) and three for negative joint torques (one per joint). 

J) Learning Process 
The used spiking cerebellar model has been outfitted with 

STOP (spike-timing-dependent plasticity). Although it is 

thought that there exists synaptic plasticity at several sites 

within the cerebellar cortex [40-41], in our model we 

concentrate the plasticity at the PF-PC synapses, since 

this seems to be the main synaptic plasticity site driven by 

teaching or temporal signals (coming from the 10). 

Therefore, in our model the abstracted corrective models 

are stored at the PF-PC synapses. The conductance of 

these synapses is set to an initial medium value (15nS) at 

the beginning of the simulation, and is modified through 

the plasticity along the training process each time [42]. 

This synaptic plasticity is composed of two mechanisms: 

Long-term potentiation (L TP) and long-term depression 

(LTD). For the LPD mechanism, the received 10 output 

activity is interpreted as an error signal [16] [43-45] [20]. 

Each 10-cell spike triggers a weight depression at the PF

PC synapse which received activity from the 

corresponding PF. The amount of synaptic conductance 

decreased depends on when the PF spikes arrived at the 

Pc. That is, when an 10 spike is received, the past PF 

activity is convolved with an integral kernel (defined by 

expression 4) and the corresponding conductance is 

modified as stated by expression 5A. Different integral 

kernels can be used to account for the past activity [25]. 

We have opted for this kernel expression since it can be 

efficiently implemented in an event-driven simulation 

[10] and because it considers only the past activity at a 

certain time interval. Since it relates this past input PF 

activity with present 10 error activity, the delay 

introduced by transmission pathways of the cerebellum 

MF input can be overcome by this introduced signal 

timing difference. After this mechanism is repetitively 

activated, some PC output is reduced for the learned 

input patterns, in such way; this PC will not inhibit its 

corresponding DCN cells, producing cerebellar output 

[46-47]. To compensate the synaptic conductance 

depression, LTD is accompanied by the opposite process 

at the same synapses: LTP. [15][40-42]. When an input 

spike arrives at the PC through a PF, the corresponding 

synapse conductance is increased by a fixed amount, as 

stated by expression 5B. 

k(t) = e - (t-tpo,,,ynapNc,p;ke ) sin(t - t . .  )20 (4) post synapllc ,pike 

lO'pikelim 
LTD: Vi,l1wi =- fk(t -tlOspik,)DGR.spike-Jt)dt (SA) 

-00 

LTP:l1wi =a (SB) 

G. Measurements 

The learning performance is characterized using three 
estimates which are calculated from the evolution of the 
mean absolute error (MAE) of the three robot joint 
coordinates along the executed trajectory (trial) during the 
learning process: 
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Fig. 5. MAE-based estimators. Evolution of the mean absolute error 
(MAE) of the robot joint coordinates in radians. During the learning 
process of an 8-like trajectory the MAE decreases until a final value range. 
The learning performance is evaluated using three estimates extracted from 
the MAE evolution: I) Accuracy gain, 2) Final error and 3) Final error 
stability 

1) Accuracy gain (estimates the error reduction rate 

comparing the error at the beginning of the learning process 

and at the end). This estimate is important when 

manipulating different objects since the initial error for each 

one may be different. 

2) Final error (average error of the last 30 movement trials). 

3) Final error stability (standard deviation of the last 30 

movement trials). 

We have carried out 250 trials. During this process, the 
obtained error in each trajectory execution decreases until it 
reaches a final stable value. The obtained mean absolute 
error (MAE) of a single complete training process is shown 
in Fig. 5. We obtain the performance estimates defined 
before (accuracy gain, final error and final error stability). 
We have used these performance estimates to characterize 
the adaptation mechanism capability. 



II. RESULTS 

A. Learning dynamic models 

We have carried out a set of experiments to study the 
capability of the cerebellar architecture to abstract different 
corrective models when the dynamics of the plant is 
modified by manipulating different objects. 
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Fig. 6. Learning Performance when manipulating different objects 

(O.5kg, lkg, 1.5kg and 2kg) during a 250-trial leaning processes. a) 
MAE evolution during the whole learning process. b) Accuracy gain 
estimate achieved for each manipulated object. The different initial error 
for each manipulated object is revealed by this estimate. 

The performance results of the followed trajectory have 

been evaluated during 250 trajectory executions (trials). 

Fig.6a shows the MAE evolution (each point represents the 

error along the 8-like trajectory) for each training process 

manipulating four objects attached at the end of the last 

segment of the robot arm (effector): 0.5kg, lkg, 1.5kg and 

2kg object. Fig. 6b shows the performance in terms of 

accuracy gain for the same experiment. Under normal 

conditions, without extra mass added to the end of the 

effector, the "crude inverse dynamic robot model" module 

calculates rough motor commands to control the robot 

plant. Under altered dynamics conditions, in contrast, the 

motor commands are very inaccurate to compensate for the 

new undergone forces (inertia, etc.), and this leads to 

distortions in the performed trajectories. During repeated 

trials, cerebellar model is able to learn/abstract a corrective 

dynamic model for each manipulated object and supplies 

the corrective motor torques. Therefore, the error is more 

significantly reduced when the model of the "crude inverse 

dynamic robot model" module differs markedly from the 

dynamic model of the plant (robot + manipulated object) 

since the cerebellum produces higher corrective forces. 

B. Context switching between two dynamic models. Non
destructive learning. 

To assess the capability of the cerebellar architecture to 
abstract and store different corrective models 
simultaneously, we have conducted an experiment in which 

the dynamics of the plant is changed during the learning 
process each 15 trials. We alternate between two different 
contexts: manipulating a lkg object and a 2kg object. The 
context-related cerebellar input is supplied with different 
signals in each context to enable the cerebellum to 
differentiate both contexts allowing different models 
(contexts) to be abstracted and retrieved efficiently in a non
destructive manner delivering corrective actions in the 
framework of a control task. In Fig 7. It is shown that the 
learning is done in a non-destructive manner since once the 
final error for each context is reached, this error value is 
maintained stable when the context changes (therefore not 
destroying the previous-context model). We have obtained a 
trade-off between the accuracy and the capability to abstract 
different models with low interference. The accuracy of the 
abstracted models is increased if the cerebellar sensory 
input signals are prioritised dedicating more encoding and 
computing resources along the processing pathway (MF
GR-PC-DCN cells). This characteristic relies on the 
separation capability of the granular layer for sensory 
signals related to different contexts. Alternatively to a 
markedly-separated representation of the sensory signals, 
we have explored how specific context-related cerebellar 
input signals can be prioritized requiring lower amounts of 
dedicated resources (input fibers and connections) to each 
abstracted model. 
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lRlALS 
Fig. 7. Non-destructive learning in a context switching scenario. The 
dynamics of the plant is alternately changed between two contexts. In the 
first context, the end-segment of the robot arm is loaded with a 2kg object 
and in the second one with a I kg object. 

C. Dealing with sensory-motor signal delays 

Since biological systems must cope with significant 
sensory-motor delays (around 100 ms) [48] and it is thought 
that the cerebellum solves this problem [22], the cerebellar 
model described here is conceived to deal with these 
sensory-motor delays. To evaluate the capability of the 
cerebellar architecture to overcome these delays, we have 
run five 250-trial learning processes using different sensory
motor delays and manipulating a 2kg object. In each 
simulation, the integral-kernel peak (see expression 4) is 
adjusted to match the corresponding sensory-motor delay. 



Therefore even if the sensory-related signals (errors) arrive 
delayed at the cerebellum, the learning mechanism 
considers the corresponding past input. Fig 8a shows the 
MAE evolution during the five simulations and Fig 8b 
shows the achieved final error and final error stability for 
the same simulations. As it is shown, the delay value does 
not affect to a large extent the obtained performance in long 
term. The final average error is nearly constant in these 
experiments. 
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Fig. 8. Learning with different sensory-motor delays (from 30ms to 

l50ms). The robot is manipulating a 2kg object. a) MAE evolution b) 
Final error and final error stability for each delay. 

However, when using small delays, the error-reduction 
speed is slower than when using long delays. For small 
delays the integral kernel has a sharper shape. The sharper 
the integral kernel shape is, the more precise the learning 
becomes. On the other hand, this drives us to a slower 
synaptic weights adaptation. For long delays the incoming 
signals are distinguished less precisely and more connection 
weights are affected by the same input signal, therefore, a 
smoother and wider kernel shape allows the learning to 
achieve good results more quickly. 

III. CONCLUSION 

This work focuses on studying how a cerebellar adaptive 
module operating together with a crude inverse dynamics 
model can effectively provide corrective torques to 
compensate deviations in the dynamics of a base plant 
model (due to object manipulation). We have evaluated how 
a new temporal-correlation kernel driving an error-related 
LTD and a compensatory LTP component (complementing 
each other) can achieve effective adaptation of the 
corrective cerebellar output. We have shown how the 
temporal-correlation kernel can be adjusted to overcome the 
sensory-motor delays. 

We have also evaluated how this cerebellar module can 
abstract models corresponding to manipulated objects that 
significantly affect the dynamics of the plant (arm+object), 
providing corrective torques for more accurate movements. 
The cerebellar model includes two new proposed state input 
representations encoding context-specific inputs (ECEA) 
and current sensory signal encoding the immediate state 
during the experiment (ICEA). These context-encoding 

strategies complement each other. Furthermore, the results 
obtained with this kind of cerebellar structure are coherent 
with the experiments done with human experimentation 
[49-51]. 

As future work, we will study the scalability in joints of 
this cerebellar configuration (using multiple 
"microcomplexes"), its robustness against noise in mossy 
fibers entries and inferior olive, its behavior in the 
framework of different control loops and kinematics 
changes due to object manipulation. The results of this 
paper aim to advance in building the bridge between 
neurophysiologists and I.T. 
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