
September 22, 2011 16:12 S0129065711002900

International Journal of Neural Systems, Vol. 21, No. 5 (2011) 385–401
c© World Scientific Publishing Company

DOI: 10.1142/S0129065711002900

ADAPTIVE CEREBELLAR SPIKING MODEL EMBEDDED
IN THE CONTROL LOOP: CONTEXT SWITCHING

AND ROBUSTNESS AGAINST NOISE

N. R. LUQUE∗,‡, J. A. GARRIDO∗,§, R. R. CARRILLO†,¶,
S. TOLU∗,‖ and E. ROS∗,∗∗

∗Department of Computer Architecture and Technology
CITIC, University of Granada

Periodista Daniel Saucedo s/n, Granada, Spain
†Department of Computer Architecture and Electronics
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This work evaluates the capability of a spiking cerebellar model embedded in different loop architec-
tures (recurrent, forward, and forward&recurrent) to control a robotic arm (three degrees of freedom)
using a biologically-inspired approach. The implemented spiking network relies on synaptic plasticity
(long-term potentiation and long-term depression) to adapt and cope with perturbations in the manip-
ulation scenario: changes in dynamics and kinematics of the simulated robot. Furthermore, the effect
of several degrees of noise in the cerebellar input pathway (mossy fibers) was assessed depending on
the employed control architecture. The implemented cerebellar model managed to adapt in the three
control architectures to different dynamics and kinematics providing corrective actions for more accurate
movements. According to the obtained results, coupling both control architectures (forward&recurrent)
provides benefits of the two of them and leads to a higher robustness against noise.
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1. Introduction

The efficiency and complexity of animal movement
suggest that the biological motor controller does not
consider the articulated animal limbs as strings of
independent linked bodies. The necessary force for
coordinated animal movements, such as reaching and
walking, is smartly and conjointly determined for
each joint. Due to the nonlinear relationship between
joint forces and limb movements and the need to sat-
isfy certain constraints on a movement in different
controlling scenarios, biology seems to use advanced
controlling mechanisms of interest also to advanced
robotics.

Although numerous details of cerebellar micro-
circuitry have been determined, the functional con-
tribution of the cerebellum to the motor system
function remains an open issue. The complexity and
the sophistication of the primate motor control sys-
tem are overwhelming. This motor control is highly
multi-dimensional and non-linear, making its char-
acterization troublesome.1 However, the cerebellum
is commonly supposed to be responsible for timing,
fine-tuning, and coordinating the motor system.2–4

It is fair to think that emulating the functionality
of the cerebellar microcircuitry would allow the con-
trol of non-stiff-joint “robotic arms” properly driven
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with relatively low-power actuators (as is the case
of biological counterparts).5 Very diverse models
have been proposed and evaluated.6–11 The cerebel-
lum is usually divided into three parts. One region
that is mainly associated with the vestibular sys-
tem, another part related with the brainstem and
spinal cord, and a third region, the cerebrocerebel-
lum, that has extensive interconnections with the
cerebral cortex and is likely to be involved in motor
coordination.12 However, this knowledge about the
cerebellar cortex has not been used in robotics as
successfully as in biology.

The control function of any individual region of
the cerebellum relies both on its internal microcir-
cuitry and on the way it is connected with other
parts of the motor system.13,14 These connections
and their functionality still remain an open issue.15

The cerebellum is involved in a feedback loop for
muscle control. When the cortex sends a message
for motor movement to the lower motor neurons in
the brain stem and to the spinal cord, it also sends
a copy of this message to the cerebellum. This is
transmitted from the pyramidal fibers in the cortex
on the cortico-pontine-cerebellar tract to the cerebel-
lum. Additionally, the cerebellum also receives infor-
mation from muscle spindles, joints and tendons.16

Therefore, the cerebellum receives motor commands
and also, actual sensory signals. This allows the
extraction of corrective models on the “manipulating
arm” for accurate movements. Traditionally, when
considering the control system, it is assumed that the
efference copy of motor commands predicts the sen-
sory consequences of actions, including the sensori-
motor pathways delays (the spinal cord inverse model
transforms the torques into muscle tension) and also
allowing its integration with the sensory information
related with the actual state.17 The concept of inter-
nal feedback from an internal model of the arm (or
body)18–20 has been extensively accepted (known as
the forward model and formed in the cerebellum via
the cerebrocerebellar communication loop).

Furthermore, a wide range of cerebellar motor-
control-system approaches has been developed. This
is a very active research field (for a review, please,
refer to Ref. 10).

By using a forward model combined with an
inverse dynamics model, the efference copy of the
motor command output from the inverse model can

be used as an input for a forward model. A for-
ward dynamics transformation is able to predict the
dynamics of the muscles from the state of the system
and therefore, can be used to compute a controller
output.

On the other hand, it has been recently sug-
gested that cerebellar microzones typically receive
mossy fiber (MFs) inputs that are related to the out-
puts of those microzones.21 This configuration leads
to a rather modular scheme. This modularity seems
to facilitate the potential role of the cerebellum in
adding corrective signals on the sensory space rather
than onto motor signals. There are biological evi-
dences that suggest that motor cortex functionality
is heterogeneous allowing both control possibilities
(addition of corrective terms in both the sensory and
motor space).22 The cerebellum computing correc-
tive terms in the sensory space have motivated some
authors to suggest a different cerebellar control loop
which is called recurrent model.14,21

This biologically inspired cerebellar architecture
based on the cerebellar connectivity can deal with
the so-called distal error problem. The natural error
signal for learning motor commands is the differ-
ence between actual and correct commands (‘motor
error’). However, in autonomous systems, the correct
command is typically unknown. Only information
about the sensory consequences of incorrect com-
mands is available, which leads to an error repre-
sentation (based on sensory signals). This is related
to the motor error; however, this relation may be
complex. Therefore, sensory-based error estimations
are called ‘distal errors’. How to use this information
to drive motor learning is the distal error (or motor
error) problem.

These two cerebellar architectures have been pro-
posed as biologically-inspired approaches. Thus, it is
fair to think that both architectures may co-exist and
work together in the cerebellum developing a comple-
mentary functionality (see Fig. 1). This is the main
issue under study in this paper.

The configuration illustrated in Fig. 1 has
remarkable analogies with the classical inner loop/
outer loop control architecture (see Fig. 2).

The inner loop/outer loop architecture groups
many classical robot-control strategies from the
literature.23,24 This separation of the inner loop and
outer loop terms is important for several reasons; in
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Fig. 1. Biological circuitry projection of the recurrent-
forward control loops.

Fig. 2. Inner/outer control loop.

the inner loop, the calculation of the torque com-
mands (non-linear terms) is computed to achieve a
better precision and computation speed. Besides, the
structure of the inner loop control remains fixed;
what control designers may modify more freely to
customize the control system architecture is mainly
in the outer loop. Thus, the outer loop can be totally
modified without restrictions to achieve several other
goals without the need to modify the dedicated inner
loop control. For instance, additional compensation
terms may be included in the outer loop to enhance
robustness to parametric uncertainty, unknown
dynamics, and external disturbances or tracking of

task space trajectories instead of joint space trajec-
tories, regulating both motion and force. Drawing an
analogy between the inner/outer control loop and the
presented composed control architecture, the inner
loop corresponds to the forward architecture that
supplies the torque corrections and the outer con-
trol loop corresponds to the recurrent architecture
that supplies the position/velocity corrections.

This paper studies how an adaptive spiking
cerebellum-like module which includes long-term
depression (LTD) and long-term potentiation (LTP)
at parallel-fiber to Purkinje-cell synapses (PF-PC) is
embedded in diverse control loops (forward, recur-
rent, and a combination of both architectures) to
infer corrective models which compensate deviations
in the robot trajectory when the dynamics and kine-
matics of the controlled robotic arm are altered and
noise (related to the inherent noise of the muscle
spindle signal) is introduced in the cerebellar input
(MFs).25,26 The main goal of this work is a compar-
ative evaluation of these control architectures which
shows how forward and recurrent architectures com-
plement each other in the framework of a manip-
ulation task and how robustly they behave in the
presence of noise.

2. Methods

As was exposed in the introduction section, nowa-
days, biologically inspired neural processing is an
open issue where spiking neural networks play a fun-
damental role.27–36 For a comprehensive review on
spiking neural networks, please, refer to Ref. 37.

For extensive spiking network simulations, an
advanced event-driven simulator based on lookup
tables (EDLUT) has been further developed and
used.38,39

For the robot plant simulation and the evalu-
ated control loops, an interface between the EDLUT
and the simulator of the LWR (Light-Weight Robot)
developed at DLR (German Aerospace Center)40 has
been implemented. In this way, we were able to
evaluate robotic movements of the LWR manipulat-
ing different objects that significantly affected the
dynamics and kinematics of the robotic arm.

2.1. Robotic arm simulator

Different control loops have been integrated within
the robot plant simulator of the LWR.40 The
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simulated-robot-plant physical characteristics can be
dynamically modified to match different contexts.
The LWR robot is a 7-Degrees-of-Freedom (DOF)
arm consisting of revolute joints. For the sake of
simplicity, in our experiments, the number of actual
joints (degrees of freedom) has been reduced to three.
Specifically, the first (we will refer to it as Q1),
second (Q2), and fifth joint (Q3) have been used
and the others have been kept fixed. This robot is
especially suited for interactions with humans. In
this scenario, the use of robots based on low-power
actuators in order to reduce danger for humans in
case of malfunctioning is of special interest. Further-
more, the accuracy in position and trajectory is not
fully exploitable because of the dynamically changing
interaction characteristics (non-static and structured
scenario as is the case in other robotic control appli-
cation fields). Figure 3 includes a simple scheme of
the robot arm indicating the three non-fixed joints
used in our experiments.

2.2. Control scheme

Lee Miller in Ref. 41 proposes a cerebellar control
system based on a predictive signal (supplied by the
cerebellum) with the aim of giving progressive and

Fig. 3. LWR robot-arm. The three joints used in our
experiments are explicitly indicated, all other joints are
fixed.

proper motor control commands. According to this
approach, our first cerebellar control-loop model has
been developed as a forward (FD) cerebellar control.

In this control loop (see Fig. 4(a)), the desired
arm states (robot end-effector position at each time)
are generated by the trajectory planner to follow
the desired trajectory. This trajectory in Cartesian
coordinates is translated into joint coordinates (posi-
tions (Q), velocities (Q̇), and accelerations (Q̈)) by
the trajectory generator that consists of a crude
inverse kinematic model representing the output of
the motor cortex and other motor areas (while motor
cortex provides a basic command which is appro-
priate for slow single-joint movements, the cerebel-
lum provides the necessary correction for multi-joint
movements).26 In our experiment, the robot follows
the trajectory described in Eq. (1) (see Fig. 5).

Q1 = 0.1 sin(πt), Q2 = 0.1 sin(πt + θ),

Q3 = 0.1 sin(πt + 2θ).
(1)

In the forward architecture, these desired arm
states in joint coordinates are used at each time step
to compute crude torque commands (crude inverse
dynamic robot model). They are also used together
with the contextual information (which could be
obtained through visual, haptic information or cogni-
tive “labels” as model profiles) related to the manip-
ulated object, as input to the cerebellum model
which produces the predictive corrective commands
(τcorrective) that are added to these crude torque
commands (τdesired). Total torque (τ) is delayed (on
account of delays of the biological motor pathways,
this is δ1 in Fig. 4) and supplied to the robot plant.
The difference (ε) between the actual robot tra-
jectory and the desired one is also delayed (δ2 in
Fig. 4) and used by the teaching signal computa-
tion module to calculate the inferior olive (IO) activ-
ity that reaches the cerebellum through the climbing
fibers. This signal will be used by the cerebellum to
adapt its output as described in the learning process
section.

On the other hand, the presented recurrent archi-
tecture helps the cerebellum to find out temporal
regularities in trajectory distortions. In this way, the
cerebellum is able to compute predictive corrective
position and velocity commands to compensate the
deviation caused by the dynamic and kinematic mod-
ifications on the base-robot arm.
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(a) (b)

(c)

Fig. 4. Forward (FD), recurrent (RR), and forward&recurrent control loop (FD&RR). (a) In this FD control loop, the
adaptive cerebellar module is embedded in the forward control loop and delivers add-on corrective torques to compensate
deviations in the base dynamics and kinematics of the robotic arm model when manipulating different objects. (b) Recur-
rent control loop, the adaptive cerebellar model infers a model from the error signal related to a sensorimotor input
to produce effective corrective position and velocity add-on terms. In this way, instead of propagating data from input
to output as the forward architecture does, the recurrent architecture also propagates data from later processing stages to
earlier ones. (c) FD&RR control loop delivers add-on corrective actions to compensate deviations in the base dynamic and
kinematic robotic arm model when manipulating objects. In this forward&recurrent control loop, the adaptive cerebellar
modules infer a model of effective corrective position, velocity, and torque add-on terms from the error signal related to
sensorimotor input.

According to this hypothesis and based on the
control loop described in Ref. 14, the recurrent
control architecture shown in Fig. 4(b) has been
developed.

In the recurrent architecture (RR), the arm
states in joint coordinates are also used together
(joint related information) with the contextual infor-
mation (related to the manipulated object) as

input to the cerebellum which produces the pre-
dictive corrective position and velocity commands
(qcorrective, qdcorrective) which are added to the
desired position and velocity trajectory commands.
The final total torque computed by the crude
inverse dynamics and the error signal are handled
in the same way as the previously-presented forward
architecture.
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Fig. 5. Three-joint periodic trajectory describing 8-shaped movements: (a) Angular coordinates of each joint of the Light
Weight Robot, (b) 3D view of the robot end-effector trajectory in Cartesian coordinates. This 8-like trajectory ensures
a sufficiently rich movement that allows robot arm dynamics to be revealed.42 The interaction torque values generated
in a multi-joint movement demand a more complex cerebellar control task than a summed combination of single-jointed
movements.

These two cerebellar architectures have been pro-
posed as biologically-inspired approaches; thus, it is
interesting to study their potential complementary
role in a control correcting scenario. Therefore, the
developed forward&recurrent (FD&RR) architecture
as presented in Fig. 4(c) will be evaluated.

Under normal conditions, without extra mass
added to the robot end effector, the “crude inverse
dynamic robot” module calculates rough motor com-
mands to control the robotic arm. Under altered
dynamics conditions, in contrast, the rough motor
commands are very inaccurate to compensate for the
new undergone forces (inertia, etc.), and this leads
to distortions in the performed trajectories. During
repeated trials, the cerebellar model is able to learn
a corrective dynamics model for each manipulated
object and supplies:

(a) Corrective motor torques in FD architecture.
(b) Corrective trajectory positions and velocities in

RR architecture.
(c) Corrective motor torques and corrective tra-

jectory position and velocities in FD&RR
architecture.

2.3. EDLUT: Spiking neuron simulator

EDLUT is an open software platform which allows
fast event-driven simulation of relatively-complex

neural networks through an innovative method: the
neural network43 simulations are split into the two
stages; Cell behavior characterization: each neural
model included in the network (usually defined by
a set of differential equations which govern the neu-
ral state) is simulated for every possible neural state
and the consequent evolution of each neural state
variable is stored in lookup tables. Then, in a sec-
ond stage, when a simulation of a network containing
these models is required, it can be performed without
requiring a computationally-costly numerical proce-
dure for solving the differential equations defining
the neural model. EDLUT is used for the simulation
of the embedded cerebellar module.

2.4. Neural models

The simulated spiking network consists of two dif-
ferent integrate-and-fire (I&F) cell types.43 The
used cell models are a modified version of the
spike-response model (SRM) with synapses modeled
as input-driven conductance.44,45 Thus, the neuron
models account for dynamic synaptic conductance
rather than simply for constant current flows, pro-
viding an improved description over simpler I&F
models.46

The synaptic conductance follows a decaying
exponential function triggered by input spikes as

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

11
.2

1:
38

5-
40

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
02

/2
1/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 22, 2011 16:12
S0129065711002900

Adaptive Cerebellar Spiking Model Embedded in the Control Loop 391

stated in Eq. (2):

gexc(t) =

{
0, t < t0

gexc(t0)e−
(t−t0)

τexc t ≥ t0
(2a)

ginh(t) =




0, t < t0

ginh(t0)e
− (t−t0)

τinh t ≥ t0
(2b)

where gexc and ginh represent the excitatory and
inhibitory synaptic conductance. τexc and τinh rep-
resent the corresponding synaptic time constants.
Finally t0 represents the last spike time arrival
(already computed).38 This exponential representa-
tion has several advantages. Firstly, it is an effective
representation of realistic synaptic conductance. Sec-
ondly, each synapse type requires only a single state
variable per neuron, because the effect of input spikes
through several synapses of the same type can sim-
ply be recursively summed when updating the total
conductance if they have the same time constants.
Therefore, when an input spike is received at time t,
for example, through an excitatory synapse, its cor-
responding conductance gexc(pre−spike)(t) is abruptly
incremented in a term Gexc,j as described in Eq. (3):

gexc(post−spike)(t) = Gexc,j + gexc(pre−spike)(t). (3)

Gexc,j is the weight of synapse j (a similar relation
holds for inhibitory synapses) and gexc(pre/post−spike)

represents the excitatory synaptic conductance
before (pre) and after (post) the spike arrival,
respectively.

In our simulations, the synaptic parameters have
been chosen to represent excitatory AMPA-receptor-
mediated synapse time constants and inhibitory
GABAergic synapse time constants of cerebellar
granule cells.47–51 Note that different cells might
have different parameters (Table 1).52–55

The neuron membrane potential Vm at time t is
defined by differential Eq. (4).

Cm
dVm

dt
= gexc(t)(Eexc − Vm) + ginh(t)(Einh − Vm)

+ Grest(Erest − Vm). (4)

Where the conductance values gexc(t) and ginh(t)
integrate all the contributions received through
individual excitatory and inhibitory synapses respec-
tively, Grest represents the resting conductance, and

Table 1. Parameters of the cell types.

Parameter Granule cell Purkinje cell

Refractory period 1ms 2 ms
Membrane capacitance 2 pF 400 pF
∗Total excitatory 1 nS · 100 1.3 nS·

peak conductance ·175000 · 10%∗
Total inhibitory peak

conductance
1 nS · 200 3 nS · 150

Threshold −40mV −52mV
Resting potential −70mV −70mV
Resting conductance 0.2 nS 16 nS
Resting time constant

(τm)
10ms 25 ms

Excitatory-synapse
time constant (τexc)

0.5 ms 0.5ms

Inhibitory-synapse time
constant (τinh)

10ms 1.6ms

Note: Parameters obtained from the following papers:

Granule cell (GrC)47–51 and Purkinje cell (PC)52–55.

*Where 10% means the ratio of active connections PF-

PC (out of the total 175000 PFs).

Eexc, Einh, and Erest represent the corresponding
reversal potentials. Equation (4) is amenable to
numerical analysis. In this way, Vm, gexc, and ginh,
can be calculated for a given time after a previous
neural state or input spike allowing the event-driven
simulation scheme. The firing time (tf ) is the time
when the membrane potential (Vm) reaches the fir-
ing threshold (Vth) and an output spike is emitted.
It can be calculated from the membrane potential
evolution.

Table 1 shows the equation parameters corre-
sponding to the two neural models used in the sim-
ulated cerebellum.

2.5. Cerebellum model

Two different cerebellar module configurations based
on the scheme of Fig. 6 have been used. The first one
corresponds to the previously called forward control
architecture providing corrective torque terms and
the second one corresponds to the recurrent control
architecture providing corrective terms in the sen-
sory space. Here we briefly indicate the different cere-
bellar module layers:

(i) Mossy fibers (256 fibers) (MFs): Mossy fibers
carry both contextual information and joint sen-
sory information related to desired and actual
positions and velocities. An MF is modeled as a
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Fig. 6. Cerebellum model scheme. In FD and RR con-
figurations, the cerebellar input, which encodes both the
desired and actual position and velocity of each joint dur-
ing the trajectory, is conveyed (upward arrow) through
the mossy fibers (MFs) to the granular layer (crossed
arrow indicates a random connectivity, i.e. each Granular
cell receiving four randomly chosen MFs). Inputs encod-
ing the error are sent (upper downward arrow) through
the inferior olive (IO). Cells of the deep cerebellar nuclei
(DCN) collect activity from the MFs (excitatory inputs)
and the Purkinje cells (inhibitory inputs) and provide the
cerebellar outputs (lower downward arrow). The DCN
output is added as a corrective activity in the control
loop. In the forward-architecture the output is added as
corrective torques to the control torques (Fig. 4(a)). In
the recurrent-architecture cerebellum configuration, the
output is added as trajectory corrections (in position and
velocity) in the control loop (Fig. 4(b)). Both outputs
work complementarily in Fig. 4(c).

leaky I&F neuron, whose input current is cal-
culated using overlapping Gaussian functions
as receptive fields on the input-variable value
space.39 This is carried out by modeling the con-
tribution received from muscle or skin related
afferents at a high level of abstraction. This
cerebellar input layer (MFs) has been divided
into 14 groups of fibers: 12 groups of twenty-
grouped fibers encode both actual and desired
joint velocity and position sensor information;
the other 2 groups encode the context. The
explicit contextual information is encoded by
these 2 groups of eight-grouped cells (16 context
input fibers). These MFs encode information
assumed to be received through other sensory
systems (such as vision). Each different context

Fig. 7. Granular layer model. Explicit and Implicit con-
text encoding approach.59 Each granule cell receives exci-
tation from an explicit-context-encoding fiber and three
other randomly chosen MFs from the current and desired
position and velocity groups.

(object under manipulation) activates differ-
ently this population of neurons. Figure 7 illus-
trates this input connectivity.

(ii) Granular layer (1500 cells) (GR): A simpli-
fied granular layer of the cerebellum has been
designed with the purpose of obtaining suit-
able signals at parallel fiber (PF) signals. The
information provided by MFs is transformed
into a sparse representation that facilitates dis-
crimination of very similar inputs in the large
granule cell (GR) layer, 56 in which each cell
receives four excitatory connections: three con-
nections from randomly chosen joint-related
MFs groups and the other one, from a context-
related MF group. PFs are the output of this
layer. The sensorimotor corrective models are
learned and stored as weight values at the
PF-PC connections.

(iii) Climbing fibers (CF) (48 climbing fibers in for-
ward architecture, 96 climbing fibers in recurrent
architecture): This layer consists of 6 groups of
CFs. In recurrent architecture, each group is
composed by 16 CFs (each of them is subdi-
vided in 2 subgroups of 8 CFs). In the forward
architecture, each group is composed by 8 CFs.
Each CF carries the teaching spikes (obtained
from error signals) from the IO to a Purkinje
cell.
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(iv) Purkinje Cells (PC) (48 Purkinje cells in for-
ward architecture) (96 Purkinje cells in recur-
rent architecture): In the forward architecture,
this layer is divided into 6 groups of 8 cells.
In the recurrent architecture, this layer is com-
posed by 6 groups of 16 PCs; each group is also
subdivided into 2 subgroups of 8 Purkinje cells.
Each granule layer cell is connected to 80 per
cent of PCs. Each PC receives the teaching sig-
nals used for the synaptic plasticity from a CF.
Every two PCs; a cell of the deep-cerebellar-
nuclei is inhibited. The PF-PC synaptic conduc-
tances are set to an initial value (15nS) at the
beginning of the simulation, and are modified
by the learning mechanism during the training
process. This value is significantly lower in the
corresponding rat cerebellum synapses.57 How-
ever, a reduced version of the cerebellum (1500
GRs) is being modeled; therefore, each PC only
receives activity from 1200 PFs (80% of GR). In
a full model of the cerebellum, each PC should
receive activity from 150000PFs.58 Therefore,
PF-PC weight values have been scaled in order
to obtain a similar PC excitation.

(v) Deep Cerebellar Nucleus cells (DCN) (24 DCN
cells in forward architecture) (48 DCN cells in
recurrent architecture): In the forward model,
the cerebellum output is generated by 6 groups
of these cells (2 groups per joint) whose activ-
ity provides corrective actions to the specified
arm commands. Each neuron group in the DCN
receives excitation from every MF and inhibi-
tion from the two corresponding PCs. In this
way, the sub circuit PC-DCN-IO is organized in
six microzones. In the forward architecture, the
cerebellar corrective output (torque) for each
joint is encoded by a couple of these groups. One
group is dedicated to compensate for negative
errors (agonist) and the other one is dedicated
to compensate for positive errors (antagonist).
In the case of the recurrent architecture, the
cerebellum output is generated by 6 groups of
these cells; 3 groups correspond to the joint–
position corrections (one group per joint) and
the other three groups correspond to the joint–
velocity corrections. Each group is subdivided
into 2 subgroups (of 4 cells); one subgroup han-
dles positive error corrections and the other one
handles negative error corrections.

2.6. Learning process

Although there seems to exist adaptation processes
at several sites within the cerebellar circuitry,60,61

one of the main synaptic adaptation mechanisms
(induced by CF activity) seems to be the long-
term depression (LTD) at PF-PC synapses62,63 that
has been correlated to cerebellar motor learning.64

Therefore, the IO output (CF activity) is interpreted
as an error-related signal 65–68 which drives this plas-
ticity. When the conductivity of a PF-PC synapse
becomes very low by this adaptation, the correspond-
ing PC will not inhibit its corresponding deep cere-
bellar nucleus cells.56,69 Another type of plasticity,
long-term potentiation (LTP), which occurs at the
same site, does not require the activation of CF70

and compensates the effect of LTD.
Spike-timing-dependent plasticity (STDP) mech-

anisms to reproduce these adaptation processes have
been implemented.71 Since LTD synaptic plastic-
ity requires the co-activation of PF and CF input,
every time a CF spike is received by a PC, the
conductance of all PF synapses corresponding to
that PC are decreased according to Eq. (6a). That
is, the past spike activity received through each
PF is convolved with the integral kernel defined by
Eq. (5) and the result is used to obtain the corre-
sponding conductance decreases. This integral ker-
nel, which correlates the IO and PF activity, was
designed in such a way that it shows a peak at 100
milliseconds72–74; which makes the PF activity that
was received 100ms before the CF spike relevant.
This time delay matches the sensorimotor delays of
our system (see Fig. 4). After this mechanism is
repetitively activated, when the same pattern of PF
activation appears, the PC will not become active
and the corresponding DCN will produce activity
recognizing the learned pattern. The opposite adap-
tation process (LTP) is implemented by increasing
the weight of a PF-PC synapse each time it trans-
mits a spike as defined in Eq. (6b).39,43,68,71

k(t) = e−(
t−t0

τ ) sin
(

2π

(
t − t0

τ

))20

. (5)

LTD : ∀ i, ∆wi

= β

∫ IOspike

−∞
k(tIOspike − t)δ(t)PFi

dt. (6a)

LTP : ∆wi = α. (6b)
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Where t0 is a time constant determined by the bio-
logical path delay which is fixed to 100ms and τ is a
time reference which is set to 1 s in order to normalize
the arguments in the learning rule. ∆wi represents
the synaptic weight increment at the ith PF reaching
that PC, tIOspike stands for the time in which the cor-
responding CF transmits a spike, δ(t)PFi is a Dirac
delta function which represents the activity in the ith
PF (1 when the PF carries a spike, 0 when it does
not). Finally α and β are constant values that modu-
late the synaptic weight changes at PF-PC synapses
(α = 0.005 and β = −0.1).

2.7. The error signal drives teaching
signal

The trajectory position/velocity error is used to cal-
culate the teaching signal. This teaching signal fol-
lows Eq. (7).

εpositioni
= (Qdesiredi

− Qactuali)[(t + tdelays) − ti].

εvelocityi
= (Q̇desiredi

− Q̇actuali)[(t + tdelays) − ti].

i = 1, 2, . . . n, joints

(7)

And the computed error in the forward and recur-
rent architectures is given by Eq. (8).

FDεdelayedi
= kpi · εpositioni

+ kvi · εvelocityi
;

RRεpdelayedi
= kpi · εpositioni

;

RRεvdelayedi
= kvi · εvelocityi

i = 1, 2 . . . n, joints.

(8)

Where kpi · εpositioni represents the product of a con-
stant value (gain) at each joint and the position error
in this joint (difference between desired joint position
and actual joint position (Qdesired − Qactual)).

kvi · εvelocityi represents the product between a
constant value (gain) at each joint and the velocity
error in this joint (difference between desired joint
velocity and actual joint velocity (Q̇desired−Q̇actual)).

Position/velocity error signals are delayed to
align them in time according to biological delay path-
ways (tdelays represents the signal delays in the con-
trol loop). Biologically speaking, this time-matching
of the desired and actual joint states can be explained
by the fact that the trajectory error would be
detected at the level of the spinal cord, through a
direct drive from the gamma motoneurons to the
spinal cord.75

IO cells respond with probabilistic Poisson pro-
cess encoding the teaching signal into a low frequency
probabilistic spike train (from 0 to 10Hz, average
1 Hz).76

2.8. Decoding the cerebellar output

The output variables τcorrective (in the FD configura-
tion) or (q, q̇)corrective (in the RR configuration) are
extracted from the firing rates of the DCN belonging
to the related population, Eq. (9).

τ
+/−
corrective/(q, q̇)+/−

corrective =
4∑

j=1

v̄j(t). (9)

Where v̄j(t) is the firing rate of neuron j at time
t, and the over-line indicates that the measures
are averaged over a sliding time window of 100ms,
inspired by the low frequency filtering performed by
motoneurons.

2.9. Experimental methods

Firstly, the behavior of different control architectures
has been studied in a noisy scenario by using a Gaus-
sian/uniform additive white noise on MF input sig-
nals. Table 2 indicates the different tested levels of
noise.

The MFs signals are driven when an animal per-
forms different activities. When an arm is moved
along a learned trajectory, this arm movement is
accompanied by predictable changes occurring pri-
marily in MFs inputs reporting kinesthetics of this
movement. Noise on the produced neural control sig-
nal (which may vary the firing time of motor neu-
rons) will cause deviation in actual trajectories from
the desired ones: Q(t) = Qdesired(t) + ε(t) where
Qdesired represents the desired trajectory/velocities
to be followed. We have studied how the system
behaves against two noise models (Table 2): (a) ε is a
random signal with uniform distribution and a non-
repeatable seed, (b) ε is a random signal with Gaus-
sian distribution and zero mean. Although Golgi cells

Table 2. Noise levels on mossy fiber signals.

SNR = 10 log
E[x2(n)]

ε2(n)
Uniform Gaussian

distribution distribution

Noise 1x 32 dB 23 dB
Noise 2x 18 dB 15.5 dB
Noise 4x 4 dB 8dB
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seem to play a crucial role in removing noise,77 the
evaluated cerebellar circuitry may help to accomplish
this task.

Different added noise levels were checked. The
used Signal-to-Noise-Ratio can be seen in Table 2.

In addition, different experiments have been also
carried out to evaluate how different biologically-
inspired control architectures work by abstracting
models and switching between different contexts
with a suitable cerebellar configuration.

3. Results

3.1. Noise on MF input

The learning process is evaluated by using the Mean
Absolute Error (MAE) curve. For the calculation
of the MAE of a trajectory execution, the addi-
tion of the error in radians produced by each joint
independently along the whole trajectory has been
used. 800 trials of the defined 8-shaped trajectory
using the FD, RR, and FD&RR control-loop archi-
tectures have been executed. The robot end effector
was loaded with 2 kg to increase the inertia (thus, the
initial dynamics model needs to be corrected through
learning).

Figure 8 shows the global mean absolute error
(MAE) evolution obtained from the robot joint coor-
dinates in radians. The noise was set to 1x, 2x, and
4x and was generated from a uniform distribution (a,
b, and c plots, respectively) and a Gaussian distri-
bution (d, e, and f plots).

As it is shown in Fig. 8, FD&RR architecture
remains more stable against random noise than FD
and RR architectures used independently. When the
random noise level is 1x, FD and FD&RR responses
are similar, but the more noise there is, the better
response is obtained in FD&RR compared to RR and
FD. In Figs. 8(b) and 8(c), it is easy to see that the
convergence speed and output stability is better in
FD&RR. FD&RR uses both configurations in a com-
plementary way, to support FD with the corrections
provided by RR. This causes FD&RR to have more
stability and better performance when the noise is
higher.

White Gaussian noise (Figs. 8(a)–8(c)) allows a
good precision in the cerebellum output correction
(torque predictions); prediction errors remain highly
delimited around mean values. The probability den-
sity function has its maximum value at the mean,

that is, during the learning process, the generated
noise values tend to accumulate around the mean,
the cerebellum learns this tendency and compen-
sates it. In contrast, white uniform noise (Figs. 8(d)–
8(f)) makes prediction torques less accurate since its
probability density function does not have a single
maximum value (thus, this is a harder task). The
generated noise values do not tend to accumulate
around any specific value therefore; the cerebellum
cannot easily abstract any tendency information.

3.2. Context switching between two
dynamic/kinematic models

Firstly, a set of experiments have been executed to
study the capability of the cerebellar model to infer
different corrective models when the dynamics of the
robotic arm is modified by manipulating different
objects using FD, RR, and FD&RR architectures.
During a first learning process, the robot was loaded
with a 1kg weight and executed 450 trials of the
8-like trajectory (Fig. 9(a)). During a second learn-
ing process, the robot was loaded with a 2 kg weight
(Fig. 9(b)).

As shown in Figs. 9(a) and 9(b), FD&RR archi-
tecture takes advantage of both configurations; it
uses the cerebellar corrections in torques and in posi-
tions and velocities to provide a better profile in the
obtained MAE curves.

In order to evaluate the ability of the cerebellar
module to infer and store different corrective mod-
els simultaneously using different control-loop archi-
tectures, an experiment in which the dynamics of
the robotic arm is changed during the learning pro-
cess every 15 trials has been carried out. The context
alternates between manipulating a 2 kg object and a
1 kg object (Fig. 9(c)). The context-related cerebellar
input is supplied with different signals in each con-
text to enable the cerebellum to differentiate both
contexts allowing different models (contexts) to be
efficiently learned and retrieved in a non-destructive
manner. Finally, the three different proposed control
architectures (RR, FD, and FD&RR) are compared
in a kinematic context switching scenario (Fig. 9(d)).
This kinematic context switching scenario consists of
a deformation of the end-effector (angle).

In RR architecture, the relationship between the
produced robot-arm state error and the cerebellar
output is direct, the cerebellum receives the position
and velocity error-related signals, which are properly
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Fig. 8. Accuracy evolution of the three control architectures (FD, RR, and FD&RR) when introducing noise on input
signals of MFs. Mean absolute error (MAE) of the joint coordinates in radians of the robot loaded with a 2 kg weight using
forward, recurrent, and FD&RR architectures during a learning process of 800 trials of the 8-like trajectory execution.
(a), (b), and (c) correspond to 1x, 2x, and 4x additive noise respectively using a uniform distribution. (d), (e), and (f)
correspond to 1x, 2x, and 4x additive noise respectively using a Gaussian distribution.

provided by CFs, and cerebellar outputs consist
of trajectory corrections of position and velocity,
being these input and output dimensions equivalent.
Therefore, the cerebellum does not need to imple-
ment a complex model representation translation.
With this dimension matching, the cerebellum is able
to learn and provide a quick response (a faster con-
vergence is obtained in RR than in FD in Figs. 9(a)
and 9(b)). Nevertheless, our crude inverse dynamic
robot models need to be fed with clean and con-
tinuous corrected inputs in order to supply accu-
rate torque values which command the robotic arm
properly. Due to these required input characteristics
of this dynamic model, the final torque commands in

RR architecture are not as good as the ones deliv-
ered by the FD architecture (the RR MAE error
curve is less stable than the FD case). The accuracy
of the cerebellum corrective output involves making
a trade-off between number of cells and simulation
time.

In the FD architecture, the accuracy is not
improved by correcting the input of the robot crude
inverse dynamics; the cerebellum supplies torque
command corrections almost directly to the robotic
arm (see Fig. 4(a)). However, in the FD architecture,
the relationship between the produced robot-arm
state error and the cerebellar output is not straight-
forward. The position and velocity error signal is
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Fig. 9. Accuracy evolution of the three control architectures with and without context switching. Mean absolute error
(MAE) of the robot joint coordinates in radians using FD, RR, and FD&RR architectures executing the 8-like trajectory.
(a) and (b) The context is not changed: The robot manipulates a 1 kg object and a 2 kg object respectively during a
450-trial learning process. (c) The dynamics of the robotic arm is alternately changed between the two contexts every
15 trials. In the first context, the end segment of the robot arm is loaded with a 2 kg object. In the second one, it is
loaded with a 1kg object. (d) The kinematics of the plant is alternately changed between two contexts every 15 trials:
in the first context, the robot must follow the trajectory using an end segment which is deformed 5π/12 radians. In the
second one, the robot end segment is deformed π/6 radians (this corresponds to kinematics changes that may be caused
by manipulating an object of a certain length).

conveyed by CFs while cerebellar output supplies
torque corrections. These input and output dimen-
sions are not equivalent, the cerebellum learning task
is of higher complexity. Thus, the learning conver-
gence is slower but the command torques are more
precise (FD MAE error curve is more stable than the
one of the RR architecture).

Again, FD&RR combines the advantages of both
the RR and the FD architectures. It has a high
convergence speed and good output stability after

learning. FD&RR uses the position and velocity
corrections given by RR to facilitate the FD torque
correction task, and they mutually complete each
other.

Figure 9(c) shows the MAE evolution of a 900-
trial learning process. It is shown that the learning
is performed in a non-destructive manner since once
the final error for each context is reached, this error
value is maintained stable when the context changes
(therefore, the previously-learned context model was
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not destroyed). This feature relies on the separation
capability of the granular layer for sensory signals
related to different contexts. Again, FD&RR reaches
a better behavior compared to RR and FD architec-
tures (Fig. 9(c)). FD&RR allows better inter-context
transitions (error peaks between two different con-
texts are almost negligible because of its superior
convergence speed (thanks to the RR loop)) and it
also achieves a better final stability.

The MAE evolution of a 900-trial learning pro-
cess is shown in Fig. 9(d). The results are simi-
lar to the dynamics context-switching scenario, in
single-context learning (as we have within 15 iter-
ations), high convergence speed, and good per-
formance learning curve profile in the long term
seem to be desirable aims. RR makes the transi-
tion between contexts softer; in the long term, no
transition peaks are observed. When the kinemat-
ics of the robotic plant changes, no inertia ten-
sors are involved, so the “crude inverse dynamic
robot model” module has an easier task in com-
puting the proper new torques. On the other hand,
FD provides a better curve performance than RR
(no crude inverse dynamic robot model is involved
in processing the cerebellum output). As shown in
Fig. 9(d), FD&RR configuration takes advantage of
both loops obtaining smoother transitions between
contexts and a good learning curve profile in long the
term.

4. Conclusions

This work has focused on studying biologically-
inspired robot-arm control architectures under
dynamic and kinematic perturbations of the manip-
ulation scenario. Furthermore, it has evaluated
different control loops (RR, FD, and FD&RR) in
several noisy scenarios. A cerebellar adaptive mod-
ule embedded in these loops could effectively provide
torque/position&velocity corrections to compensate
for deviations in the dynamics/kinematics of a base
robotic arm model (due to the manipulation of dif-
ferent objects and deformations of the end effector)
increasing the movement accuracy.

The cerebellar model included an input represen-
tation which encodes context-specific inputs and cur-
rent sensory signals encoding the actual arm states
during the experiment.

It has been evaluated how a temporal-correlation
kernel driving an error-related LTD and a com-
pensatory LTP component (which complement each
other) can achieve an effective adaptation of the cor-
rective cerebellar output.

The obtained results indicate that coupling both
control loop architectures (FD&RR) leads to a high
robustness against noise. Employing the recurrent
architecture (RR) to ensure a faster convergence in
learned profile curve dynamics has been combined
with exploiting the fact that the forward architec-
ture (FD) provides a better accuracy gain and out-
put stability in a noisy scenario.

In the same way, the results demonstrate that
the composite control architecture in context switch-
ing has the capability to infer and store different
corrective models simultaneously under dynamic/
kinematic modifications better than FD or RR con-
figurations on their own.

The assumption that the cerebellum is involved
in forward modeling for motor control is familiar
in the literature.78,79 Our results suggest that both
FD and RR loops could be present in the biological
motor control in order to achieve a better perfor-
mance. In fact, this proposed architecture (FD&RR)
is compatible with several neurophysiological find-
ings. Firstly, several studies have reported relations
between motor cortex activity and various kine-
matic parameters of the motor output such as dis-
tance and speed80–82 as well as parameters related
to the dynamics of the movement.22 As the motor
cortex has been described as one of the targets of
the cerebellar output,83 the cerebellar output could
influence these kinematic (RR loop) and dynamic
parameters (FD loop). And secondly, results of virus
tracing studies have shown that the regions of the
cerebellar cortex that receive input from the motor
cortex are the same as those that project to the
motor cortex.84 These observations suggest that sev-
eral closed-loop circuits may be present in the cere-
brocerebellar circuits as it occurs in the FD&RR
architecture.

As future work, the scalability of these cerebellar
configurations, the potential role of new nervous cir-
cuits, such as the cuneate nucleus and Golgi cells in
noisy scenarios, other kinds of plasticity, and cell fea-
tures and finally, scalability on the number of robot-
plant joints will be studied.
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