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Cerebellar Input Configuration Toward Object Model
Abstraction in Manipulation Tasks
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Abstract— It is widely assumed that the cerebellum is one of
the main nervous centers involved in correcting and refining
planned movement and accounting for disturbances occurring
during movement, for instance, due to the manipulation of objects
which affect the kinematics and dynamics of the robot-arm plant
model. In this brief, we evaluate a way in which a cerebellar-
like structure can store a model in the granular and molecular
layers. Furthermore, we study how its microstructure and input
representations (context labels and sensorimotor signals) can
efficiently support model abstraction toward delivering accurate
corrective torque values for increasing precision during different-
object manipulation. We also describe how the explicit (object-
related input labels) and implicit state input representations
(sensorimotor signals) complement each other to better handle
different models and allow interpolation between two already
stored models. This facilitates accurate corrections during manip-
ulations of new objects taking advantage of already stored
models.

Index Terms— Adaptive, biological control system, cerebellum
architecture, learning, robot, spiking neuron.

I. INTRODUCTION

In the framework of a control task, many successful
approaches which use different kinds of “learning” (adapta-
tion mechanisms) in the control loop have been developed:
reinforcement learning [1], where systems can learn to opti-
mize their behavior making use of rewards and punishments,
genetic algorithms [2], where control systems are evolved
over many generations mimicking the process of natural
evolution, recurrent artificial neural networks [3], and also,
recently approaches based on biologically realistic spiking
neural networks (SNNs) [4], [5]. Most of the works focused
on SNNs addressing issues such as computational complexity
and real-time feasibility [6], biologically plausible models of
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different complexity [7], effects of biological learning rules
[8], etc. This brief represents a multidisciplinary research
effort in which SNNs adopting a cerebellar-like neural topol-
ogy are used with biologically plausible neural models. We
evaluate how the topology of a biological neuronal circuit
is specifically related with its potential functionality, start-
ing from electrophysiological recordings (validating the cell
models) to a proposed biologically plausible spiking control
solution.

More concretely, in this brief, we describe how a SNN
mimicking a cerebellar micro-structure allows an internal
corrective model abstraction. By adopting a cerebellar-like
network, we explore how different sensor representations
can be efficiently used for a corrective model abstraction
corresponding to different manipulated objects. When a new
object is manipulated and the system detects that significant
trajectory errors are being obtained, the abstracted internal
model adapts itself to match the new model (kinematic and
dynamic modifications of a base arm plant model). The stored
models to be used can be selected by explicit object-related
input signals (as specific input patterns generated for instance
from the visual sensory pathway) or implicit signals (such as
a haptic feedback). This can be seen as a “cognitive engine”
that abstracts the inherent object features through perception-
action loops and relates them with other incidental properties,
such as color, shape, etc. The cognition process that relates
both properties is important because it allows the inference of
inherent properties just by activating explicit perceived prim-
itives making possible to build up models of the environment
that describe how it will “react” when interacting with it.

In the framework of a robot control task, manipulat-
ing objects that significantly affect the base kinematic and
dynamic model with bio-inspired schemes is an open issue
[5], [9], [10]. Biology seems to have developed (evolved) a
scalable control system capable of abstracting new models
in an incremental way in real time. This requires a smart
model abstraction engine which is believed to be largely
based on the cerebellum [11]. State-of-the-art simulation
tools [12] and also hardware platforms [13], [14] allow cell-
based simulation of nervous centers of certain complexity
in the framework of biologically relevant tasks. This allows
addressing studies in which the function and structure of
nervous centers are conjointly evaluated to better understand
how the system operation is based on cell and network
properties.

The working hypothesis and methodology of this brief can
be briefly described as follows:

1) we address a biologically relevant task which consists in
an accurate manipulation of objects which affect a base
(kinematic and dynamic) model of the base plant using
low power actuators;
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2) we define and implement a spiking-neuron-based cere-
bellum model to evaluate how different properties of the
cerebellar model affect the functional performance of the
system.

II. MATERIAL AND METHODS

A. Experimental Setup. Interfacing the Cerebellum Model with
a Robot

1) Robot Plant: For the robot plant simulation, we have
implemented an interface between the simulator of the light-
weight-robot (LWR) developed at DLR [15] and the control
loop including the cerebellum module. The LWR robot is
a 7-DOF arm composed of revolute joints. For the sake of
simplicity, in our experiments, we used the first (we will refer
to it as q1), third (q2) and fifth joints (q3), keeping the other
ones fixed, limiting the number of degrees of freedom.

2) Training Trajectory: The described cerebellar model has
been tested on a task of smooth pursuit, in a similar way to
the one adopted by other authors [16]: a target moves along
a repeated trajectory, which is a composition of sinusoidal
components (this represents the desired trajectory). In previous
works, we evaluated a simpler cerebellar model in a target-
reaching task [5], [10] and a simple smooth pursuit task.
After these preliminary works, in this brief, we study context
switching capability, generalization-interpolation capability,
and different input sensorimotor representations.

We use an 8-like trajectory defined by in (1). The trajectories
of the individual joints have enough variation so that a
sufficiently rich movement is executed allowing dynamic robot
arm features to be revealed [17]. A multi-joint movement is
more complex from a mechanical standpoint than a summed
combination of single-jointed movements. This is due to the
interaction torque values generated by one linkage moving on
another. In this framework, the cerebellum role on the control
task becomes more complex

q1 = A sin π t, q2 = A sin (π t + θ) , q3 = A sin (π t + 2θ) .
(1)

3) Control Loop: It is largely assumed that the cerebellum
plays a major role in motor control [18]–[20]. Based on this
hypothesis, a wide range of cerebellar motor-control-system
approaches have been proposed in the literature (for a review,
the reader is referred to [21]). The central nervous system
(CNS) executes three relevant tasks. The desired trajectory
computation in visual coordinates, the task-space coordinate
translation into body coordinates, and finally, the motor com-
mand generation. As in [22], in this brief, we have adopted
the feedback-error learning (FEL) scheme in order to deal with
variations in the dynamics of the robot-arm [22] in connection
with a crude inverse dynamic model. But in contrast with
the adaptation modules used by Miller et al. [20], we use
a biologically plausible neural model as described in the next
section. Using FEL, the association cortex supplies the motor
cortex with the desired trajectory in body coordinates, where
the motor command is generated using an inverse dynamic
arm model.

Kawato et al. [22] relate different components of the control
scheme with the biological counterpart. As described in [22],

Fig. 1. Control loop.

the spinocerebellum-magnocellular red nucleus system pro-
vides an accurate internal neural model of the dynamics of
the musculoskeletal system which is learned by sensing the
result of the movement. The cerebrocerebellum-parvocellular
red nucleus system provides a crude internal neural model of
the inverse-dynamics of the musculoskeletal system which is
acquired while monitoring the desired trajectory.

The crude inverse dynamic model and the dynamical model
work together by means of updating the motor command and
predicting possible errors in the movement. As illustrated in
Fig. 1, the cerebellar pathways are structured in a feedforward
architecture, in which only information about sensory conse-
quences of incorrect commands is obtained (i.e., the difference
between actual and desired joint positions of the arm). We
developed our cerebellar-based control loop according to this
model as illustrated in Fig. 1.

We have also built a module to translate a small set of analog
signals into a sparse cell-based spike-timing representation
(spatio-temporal population coding). They encode the arm’s
desired and actual states (position and velocity) as well as
contextual information. This module has been implemented
using a set of mossy fibers (MFs) with specific receptive fields
covering the working range of the different state variables.

B. Cerebellum Model

For extensive spiking network simulations, we have further
developed and used an advanced event-driven simulator based
on lookup Tables EDLUT [23]. EDLUT is an open-source tool
[5] which accelerates the simulation of SNNs by compiling the
dynamic response of pre-defined cell models into lookup tables
before the actual network simulation. The proposed cerebellar
architecture (Fig. 2) consists of the following layers:

1) MFs: MFs carry both contextual information and sensory
joint information. A MF is modeled by a leaky I & F neuron,
whose input current is calculated using overlapping radial basis
functions as receptive fields in the value space of the input
signals.

2) Granular Layer (1500 Cells): This layer represents a
simplified cerebellar granular layer. The information given by
MFs is transformed into a sparse representation in the granule
layer [24]. Each granular cell (GR) has four excitatory input
connections: three of them from randomly chosen joint-related
MF groups and another one from a context-related MF. Parallel
fibers (PFs) are the output of this layer.
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Fig. 2. Cerebellum configuration inputs encoding the movement (desired
arm states, actual sensorimotor signals and context-related signals) are sent
(upward arrow) through the PFs. Error-related inputs are sent (upper down-
ward arrow) through the CFs. Outputs are provided by the DCN cells (lower
downward arrow).

3) Climbing Fibers (CFs) (48 CFs): This layer is composed
of six groups of eight CFs each. It carries the IO output which
encodes teaching spike trains (related to the error) for the
supervised learning in the PF–PC connections.

4) Purkinje Cells (PC) (48 Cells): They are divided into
six groups of eight cells. Each GR is connected to 80% of
the PCs. Each PC receives a single teaching signal from a CF.
PF–PC synaptic conductances are modified by the learning
mechanism during the training process.

5) Deep Cerebellar Nuclei Cells (DCN) (24 Cells): The
cerebellum model output is generated by six groups of these
cells. The corrective torque value of each joint is encoded by a
couple of these groups, one group is dedicated to compensate
positive errors (agonist) and the other one is dedicated to
compensate negative errors (antagonist). Each neuron group in
the DCN receives excitation from every MF cell and inhibition
from the two corresponding PCs. In this way, the subcircuit
PC–DCN–IO is organized in six microzones, three of them for
joint positive corrections (one per joint) and the other three of
them for joint negative corrections (one per joint). The DCN
outputs are added as corrective activity in the control loop.

The MFs encode input representation in a rather specific
way and the granular cells integrate information from different
MFs. These characteristics partially embed functional roles
of the inhibitory loop driven by the Golgi cells. Therefore,
although Golgi cells have not been explicitly included, part of
their functional roles has been integrated into the system.

C. Learning Process

It is well known that the cerebellum not only learns
sequences of pre-defined voluntary movements but also adapts
itself to external influences. This behavior seems to be very
difficult to analyze, but the cerebellum presents a regular
structured architecture that facilitates the study of how learning
may take place in our context-driven scenario using this
topology.

Although there seems to be an adaptation process at many
sites within the cerebellar structure [25], the main synaptic
adaptation driven by teaching or temporal signals (from the IO)
seems to take place at the PF–PC synapses. We have adopted a

plasticity mechanism that drives the modification of the PF–PC
synapses in the cerebellar model, based on the concept of
“eligibility trace” [16]. This trace aims to relate spikes from
IO error-related activity and the previous activity of the PF that
is supposed to have generated this error signal. The eligibility
trace idea stems from experimental evidence showing that a
spike in the CF afferent to a PC is more likely to depress
a PF–PC synapse if the corresponding PF has been firing
between 50 and 200 ms before the CF spike arrives at the PC
[16], [26]. This is indicated in (3) [5] where the integration
kernel k(t) is defined in (2). A marginal peak occurs in
the learning rule (around 450 ms after spike arrival) due
to the event-driven simulation scheme (mathematical expres-
sion based on exponential functions modulating a periodic
kernel, this presents a little hump), its impact in the global
learning amount is negligible (4%) and can be considered as
non-specific noise. In comparison with the previous learning
schemes [5], [10] in similar cerebellum structures, this one
allows to shift the maximum peak independently from the peak
width. Therefore, we can tune the control loops to different
sensorimotor delays and can narrow the maximum peak to
allow more specific learning.

We have used a simplified spiking cerebellar neural network
with spike-timing dependent plasticity (STDP). This plas-
ticity has been implemented including long-term depression
(LTD) and long-term potentiation (LTP) mechanisms in the
following.

1) LTD produces a synaptic efficacy decrease when a spike
from the IO reaches a PC. The IO output activity
is interpreted as an error signal [18], [21], triggering
a weight depression mechanism in synapses (PF–PC
connections) depending on the received activity from the
PFs. To calculate this amount of decrease, this previous
activity is convolved with an integral kernel as defined
by (2). Different expressions can be used for the learning
rule [8]. This kernel mainly takes into account all the
PF spikes which arrived 100 ms before the IO spike
to overcome the effect of transmission delays of this
range on sensory and motor signals (see Fig. 1). After
this mechanism is repetitively activated, when the same
pattern of PFs appears, the PC will not fire, in such
a way, they will not inhibit its corresponding DCN
cells [16], [27].

2) LTP produces a fixed increase in synaptic efficacy each
time a spike arrives through a PF at the corresponding
PC as defined by (2). For the sake of synaptic conduc-
tance equilibrium, LTD is accompanied by the opposite
process (LTP), which takes place at this same synaptic
site [28].

LT D : ∀i,�wi = −
∫ I Ospiket ime

−∞
k
(
t − tI Ospike

)
LT P : �wi = α (2)

k (t) = e−(t−t post synapt ic spike)

× sin
(
t − tpost synapt ic spike

)20
. (3)

These two learning rule components need to be tuned
complementing each other to be able to efficiently reduce
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action errors in the framework of a control task. In biological
systems, sensors (for instance, skin sensors and propriocep-
tors) are not directly connected to the cerebellum. They pass
through the cuneate nucleus [29] and other centers along
the sensory pathway where signals seem to be efficiently
organized to better address the cerebellar processing engine. In
this brief, we investigate how the cerebellum model can take
advantage of different cerebellar input representations during
object manipulation.

D. Mossy Layer Configuration in the Cerebellar Model

Different mossy layer configuration models have been pro-
posed in order to improve the cerebellum storage capability.

1) Base “Desired-proprioceptive configuration.” It consists
of 120 joint-related fibers, the MF layer has been divided
into six groups of 20 fibers, three groups of fibers
encoding joint positions (one group per joint) and the
other three, encoding joint velocities.

2) Encoding Approach (EC) model. Explicit Context EC
(16 context-related fibers plus 120 joint-related fibers):
This mossy layer configuration uses the base desired-
proprioceptive configuration adding 16 context-related
fibers. The contextual information is coded by two
groups of eight fibers. An external signal (related to
the “label or any captured property” of the object, for
instance assuming information captured through visual
sensory system) feeds these dedicated-eight-grouped
fibers.

3) IC model. Implicit Context EC (240 joint-related fibers):
The MF layer consists of 12 groups of 20 fibers
and delivers the actual and desired joint velocity and
position information. It uses the base-desired proprio-
ceptive configuration and adds three groups of fibers
encoding actual joint positions and other three groups
encoding actual joint velocities. The implicit contex-
tual information is conveyed using these six groups
of fibers. The actual position and velocity “helps” the
cerebellum to recognize where and how far from the
ideal (desired) situation it is. These deviations implicitly
encode a “context-like” representation based on senso-
rimotor complexes.

4) EC & IC. Explicit and Implicit Context encoding
approach (16 context-related fibers plus 240 joint-related
fibers): It uses the base desired proprioceptive and
incorporates also IC and EC architectural specifications.
Thus, this MF layer is a combination of the EC and IC
models described above.

The main aim of searching a proper mossy layer config-
uration is to exploit the capability of the granule layer for
generating a sequence of active neuron populations without
recurrence. This sequence is able to efficiently represent the
passage of time (representation of different time passages are
related with different input signals). Our system takes advan-
tage of this spatiotemporal discrimination of input signals for
learning different contexts.

As indicated in Section II-B, afferent MFs are randomly
connected to granule cells, on average, four MFs [30] per
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Fig. 3. Similarity indices for a spatiotemporal activity between two activity
patterns using EC, IC, and IC & EC configurations. The values of indices are
represented in gray scale; black 0, white 1. (a), (c), (e) Left side panels show a
white diagonal band indicating a proper generation of a time-varying granular
activity population. EC presents a mean gray value of 0.18, IC leads to a
mean gray level of 0.101, and IC & EC leads to a mean gray value of 0.074.
(b), (d), (f) Right side panels show similarity indices for two contexts. The
darker the matrix is, the better uncorrelated activity patterns are. EC presents
a mean gray value of 0.024, IC leads to a mean gray value of 0.096, and IC
& EC achieves 0.044.

granule cell. When an input signal pattern arrives at the MFs,
a spatiotemporal activity pattern is generated and the popu-
lation of active neurons in the granule layer changes in time
according to this received input. In order to evaluate the non-
recurrence in this activation train, the following correlation
function (4) is used [31]:

C (t1, t2) =
∑

i
fi (t1) fi (t2)

√∑
i

f 2
i (t1)

√∑
i

f 2
i (t2)

(4)

where fi corresponds to the instantaneous frequency of the
ni neuron (frequency measured within a 20-ms time window).
The numerator calculates the inner product of the population
vector of active neurons at times t1 and t2, and the denom-
inator normalizes the vector length. C (t1, t2) takes values
from 0 to 1, 0 if two vectors are complementary, 1 if two
vectors are identical. To facilitate the production of accurate
corrective terms, different input signals shall generate different
spatiotemporal activity patterns. The following correlation
function is used to evaluate this point as indicated in (5):

C (t1, t2) =
∑

i
f (1)
i (t1) f (2)

i (t2)

√∑
i

f (1)2
i (t1)

√∑
i

f (2)2
i (t2)

(5)

where f (1)
i and f (2)

i denote the activities of the ni neuron at
time t under different input signals (1 and 2, respectively).

The left panels in Fig. 3(a), (c) and (e) shows the similarity
index using a t1 × t2 matrix within the active granular popu-
lation at t1 and t2. A wide white band, surrounding the main
diagonal, points out that the index decreases monotonically
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as the distance [t1–t2] increases. That means a one-to-one
correspondence between the active neuron population and
time. This implies that a dynamically active neuron activity
changing can represent the passage of time.

The right panels in Fig. 3(b), (d) and (f) show how different
input signals can be discriminated by different activity pat-
terns. The values of the similarity index are small suggesting
that the two represented activity patterns are independent of the
other one. Actual and desired entries of the IC configuration
vary during time leading to a richer codification within a single
context, while EC only uses desired entries varying along the
trajectory execution. On the other hand EC gives a better
granular activity codification between contexts by using its
specific contextual signals. IC has no specific entries helping to
distinguish activity patterns when using two different contexts.
IC & EC takes advantages from both configurations, it uses
the context and the position/velocity entries to produce a better
time-varying granular activity population.

E. Experimental Methods

We have carried out several experiments to evaluate the
capability of cerebellar architecture to select and abstract mod-
els using different cerebellar topologies. In these experiments,
objects which significantly affect the dynamics and kinematics
of the base plant model have been manipulated to evaluate
the performance of different cerebellar configurations. Finally,
we have also studied how interpolation/generalization can be
naturally done for different plant + object models which have
not been used during the training process. We divided the
experiments into the following groups.

1) Cerebellar input configuration including only context-
related signals (and desired arm states) (EC).

2) Cerebellar input configuration including only sensori-
motor representation (IC) (i.e., desired and actual arm
states).

3) Cerebellar input configuration including conjointly sen-
sorimotor and context-related signals (IC & EC).

For this purpose, we have used a set of benchmark trajecto-
ries that we repeat in each iteration and evaluate how learning
adapts the GR-PC weights to tune accurate corrective actions
in the control loop (Fig. 1).

F. Quantitative Performance Evaluation

The learning process performance is characterized by using
three estimates calculated from the mean absolute error (MAE)
curve. The accuracy gain estimates the error reduction rate
comparing the accuracy before and after learning. This esti-
mate helps to interpret the adaptation capability of the cere-
bellum when manipulating different objects, provided that the
initial error is different

Accuracy Gain = M AEinit ial −
[

1

n

n∑
i=0

M AE( f inal−i )

]
;

n = 30. (6)
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Fig. 4. Multi-context simulation with changes in dynamics and kinematics
using EC cerebellar input. Each sample represents the MAE evolution (sum
of error at different joints) for a trajectory execution (trial) during learning
with no context-related signals and with explicit context-related signals.
(a) Manipulating two different loads with and without context signals. Explicit
context signals reduce 68.31% the final average error and 70.73% the final
standard deviation. (b) Equivalent end-segment of the arm has been rotated in
certain angles π/2 and π/4. The corrective torque values should compensate
these different deviations in each context (with and without activated context
signals). Explicit context switching signals reduce 62.04% the final average
error and 26% the final standard deviation.

The final error (average error over the last 30 trials)

Final Error =
[

1

n

n∑
i=0

M AE( f inal−i )

]
; n = 30. (7)

The final error stability (standard deviation over the last
30 movement trials)

Final Error Stabili ty =
[

1

n

n∑
i=0

σ
(
M AE( f inal−i )

)];

n = 30. (8)

III. EXPERIMENTAL RESULTS

A. EC Cerebellar Input

The explicit context EC uses a set of MFs to explicitly iden-
tify the context, assuming that they carry information provided
by other areas of the CNS (such as vision which helps to
identify the correct model to be used) or even cognitive signals.
Therefore, a specific group of context-based MFs become
active when the corresponding context is present. In this way,
when a certain context becomes active, a GR population is
pre-sensitized due to the specific context-related signals. We
have randomly combined the sensor signals (desired position
and velocity) of the different joints and the context-related
signals (in the MF to GR connections) allowing granule cells
to receive inputs from different randomly selected MFs (at
the network-topology definition stage). In order to explicitly
evaluate the capability of these signals to separate neural
populations for different object models, each granule cell has
four synaptic input connections: three random MF entries
which deliver joint-related information and one MF which
delivers context-related signals. In this case, we have evaluated
the capability of the cerebellum model to efficiently use
these context-related signals to learn to separate models when
manipulating objects of different weights or different kinemat-
ics (deformation in the robot-plant end-segment) (Fig. 4).
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Fig. 5. Single-context simulation using EC and IC cerebellar input and
multi-context simulation with changes in kinematics and dynamics using
IC cerebellar input. (a) and (b) Manipulation of objects of different loads
(2 kg/1 kg) without context signals. Each sample represents the MAE for a
trajectory execution (trial). (c) MAE evolution during the learning process
in EC and IC with dynamics-changing contexts. Two contexts with different
loads are manipulated, switching every 15 trials. (d) MAE evolution for EC
and IC configurations and two contexts with different ending deformation
(kinematics change), switching every 15 trials.

B. IC Cerebellar Input

In this section, we define an implicit context encoding
approach (IC), where no context-identifying signals are used.
The sensor signals (actual position and velocity of the robot)
implicitly encode (through MFs) the context during object
manipulation. We have randomly combined the sensor signals
(position and velocity) of the different joints (in the MF to
GR connections) allowing granule cells to receive four inputs
from different randomly selected MFs. The context models are
distributed along cell populations. These cell populations are
dynamically changing during the learning process (because
the actual trajectory changes as corrective torque values are
learned and integrated). Each time a new context is activated,
the specific neural population is tuned due to the slightly
different sensorimotor signals during the trajectory execution.
The context switching in IC is done automatically and learning
is carried out in a non-destructive manner, learned contexts
are not destroyed (Fig. 5).The fact that IC transitions do not
need explicit contextual information may indicate that this
configuration allows interpolation between different learned
contexts. This capability is explored by making the cerebellum
learn two contexts alternately and then, presenting a new
intermediate context (Fig. 6).

As shown in Fig. 5, although EC has a faster convergence
speed, IC presents a lower final error (0.007 rad. average
final error in IC against 0.018 rad. in EC) and a more
stable behavior (0.002 rad. of standard deviation in IC against
0.006 rad. of standard deviation in EC) after the learning
process.
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Fig. 6. Multi-context simulation with changes in kinematics and dynamics
using IC cerebellar input. Interpolation capability. (a) After 450 trials of
15 iterations per context (2 kg/1 kg added alternatively to the robot arm),
a new 1.5 kg context is presented to the cerebellum. (b) After 450 trials of
15 iterations per context (the end-segment of the robot arm includes different
rotations: π/2 and π/4 angles alternatively), a new 5π/12 context is presented
to the cerebellum.

Accuracy gain, final error average and final standard devi-
ation are similar in IC and EC. EC develops a better inter-
context transition. Comparing EC with IC in a dynamic
context switching experiment, we obtain context switching
error discontinuities 47.6% larger and a standard deviation
24.7% higher in the EC explicitly canceling context switching
signals than in the IC configuration [Figs. 4(a) versus 5(c)].
This highlights the importance of actual sensorimotor signals
efficiently used in the IC configuration, compared to EC which
only used desired states during manipulation.

Finally, comparing EC with IC in a kinematic context
switching experiment, we obtain context switching error
discontinuities 32.85% larger and a final standard devia-
tion 16.71% higher in the EC without activating context
switching signals than in the IC configuration [Figs. 4(b)
versus 5(d) explicit context signals are efficiently used in
EC configuration].

C. IC Plus EC Cerebellar Input

In this section, we evaluate how the previous EC and IC
input representations are complementary. In this case, the
cerebellar architecture includes both inputs. The MFs arriving
in the cerebellum encode the desired states, the actual states
(positions and velocities), and also, context signals which
identify the current contexts.

In Fig. 7(c) IC & EC uses the pre-learned synaptic weights
obtained in previous contexts to deal with a new payload.
Nevertheless, sensorimotor state signals feeding MFs drive fast
to a new contextual adaptation. The kinematics interpolation
is not efficient [Fig. 7(d)], interpolation across kinematics
changes is not an easy task (not linear).

IC & EC configuration also becomes robust against incon-
gruent external context-related signals (for instance, extracted
from vision). As shown in Fig. 7(e), during each epoch,
the external context signal changes do not match the actual
object switching (i.e., the external context signal does not
remain constant while manipulating a 2 kg object and it
does not do it either when using a 1 kg object). Thus,
context 1 value in the first 2 kg-415-trial-context equals A and
context 2 value in the first 1 kg-15-trial-contexts equals B.
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Fig. 7. Multi-context simulation with changes in kinematics and dynamics
using EC, IC, and IC & EC cerebellar input. Interpolation of a new context
and robustness against incongruent contextual input signals. (a) Dynamics
correction task with different loads in the robot arm. (b) Kinematics correction
task with different deviations in the end-segment of the robot arm. (c) 1.5 kg
load is fixed to the end-segment of the robot. (d) 5π/12 rotation in the end-
segment of the robot is presented. (e) IC & EC configuration is able to avoid
non-congruent contextual signals. Context-related input signals are indicated
with highlighted colors in the x-axis of the plot.

In the following 15-trial-context switching trials, values A
and B are interchanged. The incoming external contextual
information is not congruent but, thanks to sensorimotor state
signals (actual position and velocity of IC configuration), the
cerebellum is able to deal with these “misleading” external
signals.

IV. CONCLUSION

We have proposed a new simple biologically plausible
cerebellar module which can abstract models of manipulated
objects that significantly affect the initial dynamics and also
kinematics of the plant (arm + object), providing corrective
torque values toward more accurate movements. The results
are obtained from object manipulation experiments. This
new cerebellar approach, with two representations, receiving
context-related inputs (EC) and actual sensory robot sig-
nals (IC) encoding the context during the experiments, has
been studied. The IC & EC cerebellar configuration takes
advantage of both configurations which complement each
other. Smoother inter-context transitions are achieved at a fast
convergence speed. It allows the interpolation of new con-
texts (different loads under manipulation) based on previously
acquired models. Moreover, a good learning curve profile in
long-term epochs can be achieved and finally, the capability
of “overcoming” misleading external contextual information,

making this cerebellar configuration robust against incongru-
ent representations (Fig. 7), is remarkable. Furthermore, the
results obtained with this kind of cerebellar architecture are
coherent with the experiments [32], [33]. Therefore, when
both representations congruently encode the context, they shall
complement each other, while when they are incongruent,
they interfere with each other. This is so because in the
implemented cerebellar architecture, context classification and
model abstraction tasks are carried out in a distributed manner.
No pre-classification process is executed to disambiguate
incongruent context identification. In our approach, we have
also evaluated how sensorimotor representation can overcome
incongruent incidental context-related signals (i.e., sensorimo-
tor representation dominating a context-related incongruent
signal).

In a classical machine learning approach, disambiguation
is usually explicitly done through a classification module
(decision making) that can be tuned to adopt a winner-takes-
all strategy and leads to a single context model to be recalled
even in this incongruent context representation. In biological
systems, this kind of pre-classification (disambiguation) mech-
anisms may be processed in other nervous centers, although
it may reduce the interpolation and generalization capabilities
of the cerebellar model presented.
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Adaptive Neural Output Feedback Controller Design
with Reduced-Order Observer for a Class of

Uncertain Nonlinear SISO Systems

Yan-Jun Liu, Shao-Cheng Tong, Dan Wang, Tie-Shan Li,
and C. L. Philip Chen, Fellow, IEEE

Abstract— An adaptive output feedback control is studied
for uncertain nonlinear single-input–single-output systems with
partial unmeasured states. In the scheme, a reduced-order
observer (ROO) is designed to estimate those unmeasured
states. By employing radial basis function neural networks and
incorporating the ROO into a new backstepping design, an
adaptive output feedback controller is constructively developed.
A prominent advantage is its ability to balance the control action
between the state feedback and the output feedback. In addition,
the scheme can be still implemented when all the states are not
available. The stability of the closed-loop system is guaranteed in
the sense that all the signals are semiglobal uniformly ultimately
bounded and the system output tracks the reference signal to a
bounded compact set. A simulation example is given to validate
the effectiveness of the proposed scheme.

Index Terms— Adaptive neural control, nonlinear systems,
output feedback control, reduced-order observer.

I. INTRODUCTION

During the past two decades, the adaptive control of uncer-
tain systems has attracted much attention. Several typical
results have been designed in [1]–[3]. A main restriction in
these results is that the uncertainties are required to satisfy
linearly parameterized conditions with known functions. But
this assumption is difficult to be ensured in practice.

In the recent years, many researchers have devoted much
effort to deal with the problem of adaptive tracking control
for nonlinear systems with completely unknown functions.
By using the approximation property of the neural network
(NN) or the fuzzy logic systems, several elegant adaptive
control strategies have been proposed in [4]–[16] for uncertain
nonlinear systems. However, a major constraint in these results
is that the system state variables are assumed to be measurable.
If the system states are unavailable, these results cannot be
applied in practice. In the last decade, much progress has been
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