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In biological systems, instead of actual encoders at different joints, proprioception signals are acquired
through distributed receptive fields. In robotics, a single and accurate sensor output per link (encoder)
is commonly used to track the position and the velocity. Interfacing bio-inspired control systems with
spiking neural networks emulating the cerebellum with conventional robots is not a straight forward
task. Therefore, it is necessary to adapt this one-dimensional measure (encoder output) into a multi-
dimensional space (inputs for a spiking neural network) to connect, for instance, the spiking cerebellar
architecture; i.e. a translation from an analog space into a distributed population coding in terms of
spikes. This paper analyzes how evolved receptive fields (optimized towards information transmission)
can efficiently generate a sensorimotor representation that facilitates its discrimination from other “sen-
sorimotor states”. This can be seen as an abstraction of the Cuneate Nucleus (CN) functionality in a
robot-arm scenario. We model the CN as a spiking neuron population coding in time according to the
response of mechanoreceptors during a multi-joint movement in a robot joint space. An encoding scheme
that takes into account the relative spiking time of the signals propagating from peripheral nerve fibers
to second-order somatosensory neurons is proposed. Due to the enormous number of possible encodings,
we have applied an evolutionary algorithm to evolve the sensory receptive field representation from ran-
dom to optimized encoding. Following the nature-inspired analogy, evolved configurations have shown to
outperform simple hand-tuned configurations and other homogenized configurations based on the solu-
tion provided by the optimization engine (evolutionary algorithm). We have used artificial evolutionary
engines as the optimization tool to circumvent nonlinearity responses in receptive fields.

Keywords: Receptive field; evolutionary algorithm; parallelism; population coding; cuneate nucleus; spik-
ing neural network; robot.

1. Introduction

There is an active interdisciplinary field called
Neurobotics in which actual robots are controlled
by bio-inspired neural processing engines. Besides
other potential applications, this kind of set
ups are important for understanding neurobiologi-
cal computational principles (system neuroscience),

specifically, some issues under study are how sensori-
motor representations are integrated and efficiently
used in accurate manipulation tasks,1–3 how spike
timing based on different sensory representations can
help to enhance information transmission4,5 and be
efficiently used by biologically plausible neural sys-
tems6–12 (such as cerebellar-like structures).13

‖These authors contributed equally to this work.
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It is well known that the cerebellum constitutes
a fundamental part in motor systems.13–17 The cere-
bellum is fed by inputs from the cerebellar cortex,
providing a contribution in fast and precise move-
ments.18 This is crucial in the fine control of the tem-
poral evolution of fast ballistic movements,19 that is,
extremely fast movements that are impossible to be
modified by feedback circuits because the complete
movement muscle sequence control has to be planned
in advance.20,21

Furthermore, taking a look at the current
research in robot labs, a new trend in construct-
ing and controlling light-weight compliant robot
arms22–24 which mimic human arms can be seen.
Such new robotic features pursue the search of new
ways of control. In fact, controlling the dynamics
of any of these kinds of robot arms is an open
issue (there is no general established methodology
developed yet).25 Since the cerebellum combines sen-
sory information with the physical current state
to generate motor signals, it is a proper candi-
date for studying how these controlling problems are
solved by nature. In that sense, cerebellum archi-
tecture, as a control scheme, has received much
attention in the literature and different cerebel-
lum computational models have been developed.
Among others, the Cerebellar Model Articulation
Controller (CMAC),26 the Adjustable Pattern Gen-
erator (APG),27 the Schweighofer-Arbib Model,28 or
the Multiple Paired Forward-Inverse Model29,30 rep-
resent good state-of-the-art examples. All these mod-
els have something in common: they try to mimic
the functionality of the cerebellum by making an
abstraction of the cerebellum structure while keep-
ing robotic control theory in mind. As a result,
the approximations mentioned above configure
their sensorimotor inputs to enhance their control
aims.

The cerebellum supervises and supplies correc-
tive adjustments in motor commands31,32 which are
generated in other encephalon zones. It receives
continuous information from peripheral body parts
(position, movement rhythm, interacting external
forces, etc.) and, according to sensorial informa-
tion, compares the physical state of each body
part against the desired state which the motor sys-
tem is trying to achieve.33–35 In the framework of
errors (detected through this continuous compari-
son), proper corrective signals are transmitted to the

motor system increasing or decreasing specific mus-
cle activity.36 The cerebellar sensorial input is car-
ried by mossy fibers37 (MFs), which constitute one
of the major cerebellar afferent systems.38 MFs carry
information from different sources; MFs from the
pontine nuclei report on motor and sensory areas of
the cerebellar cortex,39–43 MFs from cells in the CN
handle information from forelimb muscle spindles44

related to position and movement,45,46 MFs from col-
laterals of cortical fibers carry a copy of descend-
ing motor commands to the cerebellum, and finally,
MFs from the visual cortex supply information about
movements in the visual space.47 Therefore, differ-
ent kinds of MFs drive detailed information related
to the external world and the desired/actual body
movements/positions. As a result of that, it can be
postulated that sensorial cerebellum inputs play a
critical role in cerebellum functionality.

Our system uses neural population coding48 for
sensorimotor representation. Each neuron presents a
distribution of responses over some set of inputs,
and the responses of many neurons are combined
to determine some information about the input
state.48,49 Using this kind of coding, each input stim-
ulus is represented by a set of spikes. However, the
occurrence of these spikes strongly depends on the
current generated by sensors and on which spikes
subsequently reach the first-layer cells.

In a reaching movement, the arm direction is
encoded by means of neurons whose input current
changes with the cosine of the difference between
the stimulus angle and the cell’s preferred direc-
tion50 (Cosine tuning). Each population vector cell
contributes a vector in the direction of its preferred
direction in relation to its current. Nevertheless, a
simple reaching movement involves extracting spa-
tial information including visual acquisition of the
target, coordination of multi-modal proprioceptive
signals, and a proper motor command generation to
drive proper motor response towards the target.51

Usual reaching movements towards a target that we
have already seen involve an internal representation
of the target and limb positions, and also a coor-
dinate transformation between different internal ref-
erence frames. A spiking population coding seems
to be the best way to encode sensorial informa-
tion to be consistent with biological control require-
ments.52,53 This is also important to allow system
level studies for the evaluation of the cerebellum
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functionality in the framework of accurate movement
experiments.1,2

However, the integration of computational mod-
els with neurophysiologic observations in order to
understand the main problems in motor control
requires not only the cerebellum functionality to be
considered (as is done in the CMAC, APG, and other
approaches) but also, its biological architecture (cell-
network) has to be taken into account. A necessary
translation from analog domain sensor signals into
spike-based patterns compatible with a spiking cere-
bellar network needs to be developed.

This paper tries to reveal the best way in which
sensorimotor information in a common robot sce-
nario can be handled to investigate an optimal
encoding in terms of somatosensory information.

To that aim, the followed methodology can be
briefly described at the following points:

(i) First, we consider the execution of a biolog-
ically relevant reaching movement in a robot
arm scenario. With that purpose, different
trajectories are defined over a joint space. A bio-
logically plausible translation from joint posi-
tion/velocity measures to their corresponding
spike train representation has been defined.
Population coding and tuning curves are used
to be consistent with reaching arm movements.

(ii) In order to make previous codifications more
accurate, a bio-inspired Evolutionary Algo-
rithm (EA) which optimizes the receptive fields
towards maximizing sensorimotor information
and state discrimination has been used. The
combinatorial space to be explored towards an
optimization is enormous; the EA seems to be
the proper tool that unifies biology evolution
and an optimization procedure.54

(iii) Finally, the performance of the sensorial rep-
resentations using different measures that take
into account metrical properties of the spike
train space has been evaluated.

Therefore, the paper uses a new methodology
in which an EA is used as an optimization engine
towards reaching an efficient sensory representation
to be further processed at the spiking-based cere-
bellum. As a result, in this case, an EA is used for
reverse engineering an abstraction of a biologically
plausible model. Rather than finding an optimal fit-
ness value of the cost function, the goal is to arrive

at an efficient solution in terms of receptive fields in
the sensory space. The cost function includes actual
trajectories, which makes the experimental set up
heavier but also more informative, enhancing the
usefulness of the searching methodology carried on
by the EA.

2. Materials and Methods

This section describes the principles of the proposed
methodology. An answer to different issues explic-
itly indicating what/why/how and the basis of the
proposed approach is given.

2.1. Target reaching trajectories

Anthropomorphic robotic arms, mimicking human
arms, usually consist of three links (arm, forearm,
and hand) which are connected with each other
using motorized joints (shoulder, elbow, and wrist).
Reaching involves bringing the endpoint of the robot
arm to a desired target position. Therefore, the
aim is to “connect” two points, the initial point,
defined by the actual endpoint robot arm position
and the final point, defined by the endpoint robot
arm target position. The control system leads the
sequence of motor actions to achieve the target. In a
robotic arm (due to the redundancy in the degrees
of freedom), there is an infinite number of possible
trajectories that allow the arm to reach any given
target point. A specific approach will be provided
by a planner module. But even focusing on a single
joint workspace (see Fig. 1) (shoulder, elbow, wrist),
the movement can be performed in different ways,
in smoother or abrupt movements (as indicated in
Fig. 1).

Taking into account both the ability of humans
to generalize motor learning skills with a changeable
duration/amplitude in a common workspace and the
possibility of reaching a target point in infinite dif-
ferent ways, we designed a set of different trajecto-
ries (Fig. 1) that allows us to properly explore the
workspace in a very simplified scenario. An optimal
evolution of receptive fields in this workspace may
provide us a generalized solution, i.e. a solution for
this kind of movements.

These trajectories are realistic both in terms
of robotics (cubic polynomials, linear segments
with parabolic blends55) and biological plausibil-
ity (smooth trajectories with a bell-shaped velocity
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Fig. 1. Trajectory benchmark. Within a single joint
workspace (as shown in this plot) the actual movement
can be done also in different ways, through different posi-
tion/velocities profiles. rmax and rmin represent the max-
imum and the minimum values of the joint angle.

profile (with different smooth profiles and different
trajectory ranges)).56,57

2.2. From analog signals to spike
patterns: Receptive fields

When interacting with the real world, a represen-
tation of the external environment and the internal
state of our body is supplied by the somatosensory
system to the central nervous system. The afferent
(sensory) information signals are propagated from
peripheral nerve fibers to the central nervous sys-
tem (spinal cord and brain).58 Each region of the
skin is related to an individual cutaneous sensory
nerve fiber (or a population of them). These skin
regions are called receptive fields. Therefore, each
nerve fiber has its associated receptive field, which
overlaps with other receptive fields from other fibers.
This overlapping is not fixed; the average overlap-
ping degree between receptive fields is related to its
body-location.58

When a target reaching movement is executed,
different body-parts, as muscles, tendons, and joints
are articulated depending on their body-location
along the followed trajectory. Sensory receptors (pro-
prioceptors) are activated according to movement;
thus, a time-varying set of stimuli is produced, and
its corresponding neural population varying activity

is generated. In contrast, in a robot scenario, the only
available sensory information is the one supplied by
a single encoder for each link. That involves a trans-
lation between the joint position/velocity measures
to a time-varying set of stimuli. This is illustrated in
Fig. 2. At this point, to find out an optimal biologi-
cally plausible encoding scheme that allows “biolog-
ical decoders” to take advantage of the codification
is a nontrivial point. It is assumed that the firing
rate of an individual sensory receptor follows a neu-
ral response which is characterized by Eq. (1) (also
equivalent to a cosine tuning curve, that is, neu-
rons’ firing rate varies as the angle between a sen-
sory receptors’ preferred direction or angle varies).59

Therefore, a reaching movement execution will be
represented with a sparse population of active cells
which are changing with time. This coding mech-
anism facilitates the representation of the current
sensorial state during the trajectory execution in an
unambiguous way.

The output of each receptive field (RF) in Fig. 2
is given by Eq. (1):

IRi(t) = rmin + rmax

∑
n

e−(θ−θprefi−2πn)2/2σ2
i ,

(1)

where [rmin, rmax] is the joint range in radians, θ is
the actual position, θpref is the RF preferred direction
which in this work is simplified by the RF centroid
(RF responses maximally during a trajectory execu-
tion near this centroid, and its response decreases
when the trajectory execution increasingly differs
from the preferred direction or RF centroid in this
case), σ is the width of the RF, i is the identifier
of each RF (each one is linked to its correspond-
ing mossy fiber), 2πn is a subtractive term used to
refer the actual position to the first-360◦ (the maxi-
mal range of any revolute joint is ideally 360◦), and
finally, IRi is the input current from the correspond-
ing RFi.

RFs are distributed along the range of each joint
(Fig. 2) and they have certain overlap (as in the case
of peripheral nerve receptive fields).

Each value of a proprioceptor output signal is
integrated using a leaky integrate-and-fire neuron
model shown in Eq. (2), which determines the out-
put activity that drives the cuneate nucleus activity
in the same way as the mossy fiber activity from cells
in the CN handles information from forelimb muscle
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Fig. 2. Population coding of receptor (proprioceptors) signals. The position of a revolute joint given by an encoder
along a trajectory is translated into a population coding by means of a set of tuning curves which represent the current
injected to Integrate & Fire (I&F) neurons by different sensory receptors (propioceptors). Tuning proprioceptor curves
are overlapped mimicking peripheral nerve receptive fields in the human arm. Each value of a proprioceptor output signal
(I current) is integrated using an I&F neuron whose output spikes represent the activity provided by the mossy fibers.
At the end, in each step time, a spike train is obtained from the mossy fibers that represent the sensory inputs to the
cerebellum module.

spindles.

τmi
dvi

dt
= −vi(t) + RiIRi. (2)

Related to the integrated and fire cell dynam-
ics,60 τmi is the resting time constant, vi, the
membrane potential, IRi, the input current from
the corresponding receptive field, and Ri is related
to the resting conductance of the membrane. Finally,
the i sub-index term defines the identifier of the
related mossy fiber. Therefore, the mossy fiber layer
will consist of a group of leaky I&F neurons con-
nected to their corresponding target granule cells.

At this point, the problem in this population
coding scheme is not only how to distribute propi-
oceptors (centroid and width) along the workspace,
but also how many RFs should be used in order to
enhance the information transfer between sensor sig-
nals and their spike representation.

2.3. The evolutionary algorithm as
optimization engine

The distribution of peripheral nerve receptive fields
in a human arm is the result of a continuous test and
trial process of biological evolution through millions
of years. Taking a look around our surrounding envi-
ronment, there are many examples of well-adapted
organisms (in fact, as many as living forms), pointing
out that evolution is a universal solver which over-
comes difficulties presented by nature. Hence, evo-
lutionary algorithms61 seem to be a proper tool to
optimize the receptive fields of our cerebellum archi-
tecture according to artificial evolution and keeping
the analogy (though at a very high abstraction level)
with the way in which nature solved the biological
problem.

Strictly speaking, evolutionary algorithms are a
set of bio-inspired techniques for optimization based
on the Darwinian process of natural selection. As
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in the evolution of species, those individuals (solu-
tions) showing to be the fittest ones are preferen-
tially selected for mating, so that their offspring will
inherit their genes through the course of generations.
Iteratively, selection acts as a filter for genes and
just those belonging to the best solutions are able to
overcome the selection pressure and recombine form-
ing higher order solutions. It is within that process
where the stochastic-based search of an evolution-
ary algorithm has been shown to succeed in many
optimization problems.62,63 A genetic algorithm (i.e.
a sub-class of an evolutionary algorithm) is used to
obtain, through evolution, a near-optimal peripheral
nerve receptive field distribution.

In Table 1, the pseudo-code of an evolutionary
algorithm where a population of plausible solutions
(P ) is iteratively improved from random is shown.
This evolvable population (P ) consists of Individuals
(Ind) as indicated in Eq. (3).

P = {Ind1, Ind2, . . . , Ind j}, where

j = 1, . . . , Indmax, (3)

where the candidate solutions (Individuals) are
encoded by Eq. (4).

Ind = {RFmax, {e1, e2, . . . , ei}}, where

i = 1, . . . ,RFmax. (4)

Finally, e is a receptive field defined in Eq. (5).

e = (θ, σ), (5)

where θ represents the centroid of the receptive
field along the sensory space (preferred coordinate

Fig. 3. Visual interpretation of the Population (P ) to be evolved. Each individual consists of a vector containing a
variable number of RFs defined by their own preferred coordinate θpref and the width of the receptive field-associated.

Table 1. Pseudo code of a Generational EA.

/* The initial population is a random sampling
of the search landscape*/
P <= Randomly generated initial population
Fitness(P)

/*For a number of predefined generations*/
Repeat until termination

/*Every generation, we create a new population
(Paux) of evolved individuals*/

Repeat P times
Ind1 Ind2 <=Select 2 of the fittest individuals

in P
NewInd1 NewInd2 <=Crossover(Ind1,Ind2)
NewInd1 <= Mutate(NewInd1)
NewInd2 <= Mutate(NewInd2)
Paux.add(NewInd1,NewInd2)

End Repeat
/* Evaluate individuals in population Paux*/

Fitness(Paux)
/* To keep elitism, we replace the worst individual

in Paux with the best individual in P */
Paux(individualworst) <=P(individualbest)
P <= Paux

End Repeat

of receptive field e) and σ, the width of the receptive
field (Fig. 3). Therefore, according to Fig. 2, each
candidate solution presents a spike train response in
time when a trajectory is executed. A set of executed
trajectories produce a set of spike train responses.
R denotes the set of spiking responses of a possible
candidate solution along the followed trajectories as
expressed in Eq. (6).

The heuristic-based search consists of project-
ing each individual encoding (Ind) into the problem
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space (i.e. using the Fitness function). Then, the
fittest individuals are selected for recombination. As
in the case of natural reproduction, crossover applies
to a couple of individuals (Ind1 and Ind2), merg-
ing their encodings to produce descendants (NewInd1

and NewInd2). Furthermore, there are also small
mutations in descendants in order to escape from
local-optima attracting regions. Within this process,
the best solution in every iteration (known as epoch)
is preserved for the next one.

2.4. Van Rossum distance-based fitness
function. Metrics for evaluating
information transfer

At this point, it is necessary to define a metric (goal
function) to measure whether a solution A is bet-
ter than a solution B. This is intimately related to
the functionality assumed by the system. To that
end, a metrical information transfer measure which
is employed in order to assess the fitting of an evolved
peripheral nerve receptive field distribution has been
chosen. We have found no previous approach related
to information transfer (Shannon’s mutual informa-
tion, for instance) that takes into account the whole
metrics of the spike response space.64 In order to
determine the quantity of information transmission
carried on by a large population of spikes (taking
into consideration their metrical properties), a new
entropy definition based on Ref. 65 is used. That
facilitates the comparison between different spike
populations generated by different receptive field dis-
tributions, as shown by Eq. (6).

H∗(R) = −
∑
r∈R

1
card(R)

log

(∑
r′∈R

1
card(R)

α(r, r′)

)
,

(6)

where R is the set of spiking responses of a possible
configuration of receptive fields along the followed
trajectories, card(R) is the cardinal number of R,
and finally, α is a similarity real function between
the responses (r, r′). We use as a similarity function
between two spike trains the van Rossum distance66

Dvr defined in Eq. (8). The van Rossum-based Real
function α(r, r′) will take values in the interval [0, 1]
as a response to r, r′ stimuli, as shown in Eq. (7).

α(r, r′) = 1 ↔ r = r′ otherwise

α(r, r′) = D−1
vr .

(7)

Equation (6) means that the quantity of entropy in
a system is proportional to the logarithm of possible
different microstates presented by this system. Max-
imizing the entropy involves maximizing the quan-
tity of possible microstates in the system. Keeping
in mind this concept and looking backwards to our
previously defined receptive field system, some rele-
vant points can be clarified:

(a) Each set of evolvable receptive fields produces a
set of spiking stimuli for the previously described
trajectory benchmark.

(b) A population coding that represents the differ-
ent sensorial states in an unambiguous way when
each of the trajectories belonging to the bench-
mark is executed is desirable (Fig. 4).

(c) Maximizing the number of possible population
coding microstates improves the representation
of different sensorial states. Each microstate
might be unambiguously represented in just one
single way.

(d) In order to differentiate a couple of spike train
sets, van Rossum distance is used. If two sets
of spike trains are equal, the entropy is zero,
the more the difference between both sets, the
higher the entropy will be, i.e. the number
of microstates representing different sensorial
states increases in proportion with the entropy.
According to Eq. (6), entropy depends on α,
and α depends on van Rossum distance as well.
Therefore, an optimal representation will be
ensured only if we evolve receptive fields to max-
imize the minimal distance between any of two
single spike-based states of the whole generated
set of spike trains for any benchmark trajectory.

2.4.1. Similarity function

As it was previously indicated, we have chosen a sim-
ilarity function based on the van Rossum distance.66

This function is related to the distance introduced
by Victor and Purpura,67,68 but is computationally
more efficient, Eq. (8), and has a more natural phys-
iological interpretation.

D2
vr(r, r

′)tc =
1
tc

∫ ∞

0

[r(t) − r′(t)]2dt, (8)

where our spike train (r) is defined by a set of
first spikes generated along a certain time window
by the implemented spiking neural network. It is

1250013-7

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

12
.2

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
02

/2
1/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 21, 2012 8:53 1250013

N. R. Luque et al.

0 0.2 0.4 0.6 0.8 1
rmin

0

rmax

A Trajectory in Joint Coordinates

Time (s)

(r
ad

)
(a)

rmin 0 rmax
0

0.5

1

C
ur

re
nt

Receptive Field Distribution

rmin 0 rmax
0

0.5

1

C
ur

re
nt

Receptive Field Distribution

Time (s) Time (s)

(b)

0 0,4 0,8 1
0

5

10

Time (s)

M
os

sy
 F

ib
er

 Id
en

tif
ie

r Mossy Fiber Activity

0 0,4 0,8 1
0

5

10

Time (s)

M
os

sy
 F

ib
er

 Id
en

tif
ie

r Mossy Fiber Activity 

(c)

Fig. 4. Different mossy activities corresponding to two different receptive fields when a rectilinear trajectory is followed.
(a) Trajectory which is followed by a link of a robot-arm. (b) Two configurations of receptive fields mapping the analog
joint coordinate. (c) Two spike populations (population coding) representing each sensorial state (vertical columns) along
the executed trajectory. Each sensorial state highly depends on the input receptive field distribution.

assumed that all spikes generated by the spiking
neural network are identical; being the timing of its
spikes the key information in a spike train. There-
fore, it is reasonable to model a spike train as
a sequence of identical, instantaneous Dirac delta
functions (δ(t)), representing individual spikes as
expressed in Eq. (9a).

r(t) =
M∑
i

δ(t − ti), (9a)

r(t) =
M∑
i

H(t − ti) · e−(t−ti)/tc . (9b)

In Eq. (9b), each Dirac delta function equation (9a)
is substituted by an exponential function e−(t−ti)/tc .
H is the Heaviside step function (H(x) = 0 if x < 0
and H(x) = 1 if x ≥ 0) and M is the number
of events in the spike train. In Eq. (8), distance
Dvr is calculated as the integration of the difference
between r and r′, which are spike-driven functions
with exponential terms, as indicated in Eq. (9b).
Note that the resulting distance and, indeed, its
interpretation depends upon the exponential decay
constant, tc in Eq. (9b). The distance also depends
upon the number of spikes in the trains; it can be
normalized dividing the number of spikes by M .
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2.4.2. Similarity measure

The previously introduced similarity function Dvr

depends on the tc parameter (van Rossum cost
parameter).66 This parameter determines the penal-
ization cost of two spikes when calculating the dis-
tance between them; if the distance is higher than
tc, the penalty will be one, the lower the dis-
tance is, the lower the penalty will be. Accord-
ing to Refs. 64 and 65, the CN population code is
able to discriminate different stimuli around 35ms
after the first afferent spike; therefore, a tc value of
40ms is assumed. The codification has to respond
in less than 40ms to be consistent with biol-
ogy, larger values shall be punished in the spike
metric measure using this decay constant. Human
micro-neurography recordings52,53,64 (for distribu-
tion latencies of the first afferent spike, see Figs. 3
and 4 in Ref. 52) show that generated spike trains
from different continuous stimuli have time lengths
around 35ms on average. Hence, in order to be bio-
logically coherent, a spike train (microstate) is gen-
erated for each 40ms time window providing sensor
estimates through a spike-based pattern (Fig. 4(c)).
The goal function to be calculated per executed tra-
jectory is given by Eq. (10).

Φmin = min
i�=j
i,j

(Dvr(ri, rj)), r ∈ R and i, j ∈ N+

R = {rn}, where n = number of trajectories,

(10)
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Fig. 5. Intra-Stimulus Distance. A 40 ms length time window showing two slightly different responses (cross and star
markers) of the receptive field configurations shown in Fig. 4(b) (left side) for the same input due to stochasticity in the
neural model.

where ri and rj represent a pair of spike trains as a
response to two different stimuli. A 40ms time win-
dow activity after the stimulus presentation is taken
into account to determine the stimulus response (i.e.
in a 1 s trajectory, 25 time windows of 40ms are
obtained; therefore, consequently 25 spike trains cor-
responding to 25 microstates are obtained too). R

is the whole set of spike patterns {rn} generated
when following n trajectories. Dvr (ri, rj) represents
the inter-stimulus distances between responses of two
different stimuli. We try to find out the minimal dis-
tance between any pair of spikes in the whole set of
time windows Φmin. This process is implemented one
by one in each benchmark trajectory Φn

min obtaining
Eq. (11):

1
n

n∑
1

(Φn
min), where n = number of trajectories.

(11)

On the other hand, to be consistent with biol-
ogy, intra-stimulus distance has been implemented
by means of using a slightly stochastic threshold volt-
age in integrated and fire neurons (Eq. (2)). This
means that the same stimulus may lead to a slightly
different response (Fig. 5). The same input (trajec-
tory) is presented three times to our receptive field;
the whole obtained spike set is used in Eq. (11).
Therefore, the effect of firing probability in stochas-
tic leaky I&F neurons is compensated in the cost
function.
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2.4.3. Fitness function

The target problem, the spike representation to be
used, and how to measure the fitness of a particu-
lar solution (receptive field distribution) have been
defined. Hence, the final global fitness function to be
optimized is given by Eq. (12).

fitness = max

(
1
n

n∑
1

(Φn
min)

)
,

n = number of trajectories. (12)

2.5. Experimental setup

As it was explained in the previous section, the opti-
mization criterion is to find a combination of recep-
tive fields capable of maximizing Eq. (12). That
translates into a hard combinatorial and deceptive
problem in which a good solution can be found near
a poor region of the searching landscape. Specifi-
cally, up to 30 receptive fields are considered, each
having 6000 positions (i.e. each vector element that
goes from rmin = −6 rad to rmax = 6 rad in steps of
0.002 rad is considered as a possible centroid’s posi-
tion) and different coverage width (i.e. each value
from σ = 0.02 to σ = 10 in steps of 0.001 is con-
sidered as a possible width of the associated recep-
tive field). That is, the combinatorial space can be
roughly estimated to be around 10169.

Furthermore, the time to simulate the fitness of
a single solution is computationally expensive and
can last several seconds even in current processors.
Therefore, to alleviate the burden of a determinis-
tic exploration of the combinatorial space, we have
used an evolutionary algorithm in which receptive
fields are represented using three vectors; the first
one encodes the number of receptive fields to be used,
the second one contains the position of the recep-
tive fields covering the range that can be achieved by
the joint, and the last one contains the width of the
respective receptive fields. An initial random solu-
tion (in terms of the number of receptive fields, their
position over the defined range of possible values per
joint, and their width) is supplied to the evolutionary
algorithm. Through evolution, the evolutionary algo-
rithm drives the population to promising regions of
the searching space towards near-optimal solutions.

It is remarkable that an evaluation of a sin-
gle trajectory takes 0.645 s in an Intel Core Quad
Q6600 2.4GHz 4GB RAM (the evaluation has been

performed using MATLAB). An evaluation of the
previously described benchmark takes 7.75 s; the
evaluation of the whole population of 100 individuals
takes almost 13min. An evaluation of such a popula-
tion of over 300 or more epochs/generations will take
days. That means that finding an optimal solution in
a reasonable time becomes a problem. Fortunately,
the nature of the evolutionary algorithm is inherently
suited to be parallelized, offering a straightforward
way to be scaled up improving performance in terms
of convergence time.69,70 The main idea is to speed-
up the execution times by sharing the workload of
the individuals among a pool of processors. To over-
come the issue of computational time, a global par-
allel evolutionary algorithm has been implemented.
This approach takes advantage of the parallelism at
an evaluation level in the case of a very demand-
ing fitness evaluation function (as is the case in this
work). Global parallelization consists in the paral-
lel evaluation of the individuals (i.e. candidate solu-
tions),71 usually following a master–slave model. The
algorithm runs on the master node and the individu-
als are sent for evaluation to the slaves. Additionally,
the master is responsible for collecting the results
and applying the genetic operators.

In order to conduct the experiments, a 14 node
computer cluster has been used. Each node has two
Xeon E5320 processors at 1.86GHz, with four nuclei
and 4GBs of RAM at each node.

3. Results

This Results section is focused in how to validate
this new proposed methodology. Therefore, this sec-
tion is structured in different steps showing how this
methodology should be applied when it is particular-
ized for a certain experiment.

Towards this aim, first, a predictable trajec-
tory has been used, that is, a rectilinear trajectory
(Fig. 4). If the results of the evolved set of recep-
tive fields, obtained with this simplified problem, are
suitable and consistent, it will be possible to extrap-
olate the followed methodology to an extension of
the problem over different trajectories.

At this point, it is important to define specific
metrics to evaluate how good a solution is. The Met-
rical Discrimination Analysis plays a fundamental
role in the interpretation of the results (in terms
of spike generation) and therefore, the evaluation
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of the obtained solutions. We have included a sub-
section with the Metrical Discrimination Analysis
within the Results section to make the reading more
understandable.

3.1. Metrical analysis

In order to abstract the strategy behind the evolved
values of the receptive fields, we work in a scenario
in which Dvr (ri, rj) is linear. In this case, if Dvr

(ri, rj) were linear, the way in which spikes would be
distributed to maximize the distance between each
other should be equidistant. An optimal distribution
under linear assumption of the “cost” function Dvr

in the mossy fiber number 1 of Fig. 6(a) would be
a single spike in each time window (0.04 s) with a
relative separation of 0.0016 s (time window/number
of windows) from the previous time window spike
time. The optimal relative distance between spikes in
mossy fiber 1 would be 0.0016 s. This process should
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(a) (b)

Fig. 6. Ten Evolved Receptive Fields versus Ten Equally distributed Receptive Fields. The trajectory represented in
Fig. 4(a) is used as an input of the evolvable receptive fields whose final configuration is driven by the genetic algorithm
(GA). (a) Evolved receptive fields generate a population coding that ensures a maximal fitness of Eq. (12). (Fitness 0.0434
instead of 0.0 in the equidistant solution.) A nonzero Dvr means that we have a set of spikes that represent the coding of
the executed trajectory in unambiguous way (each time window has its own unique spike train representation that implies
that any spike train can be distinguished from any other). The higher the fitness is, the more separated representation
we have (a spike train is distanced from any other spike train of the whole set as much as possible). This involves that
we can distinguish a spike train from any other sooner and more robustly in the presence of noise.

be repeated trough the other mossy fibers obtaining
a value of 0.0016 ·number of mossy fibers (in our case
0.0016 · 10). Translating this value into van Rossum
distance (tc = TimeWindow ); the obtained intra-
stimulus-value is Dvr(s0, s0.0016) = 0.0392 · number
of mossy fibers. As it was previously established, this
result would correspond to a linear cost function, but
Dvr is essentially an exponential cost function, which
means that the obtained result cannot be used as an
accurate optimum but, at least, it can be used as
a nonfeasible upper bound for the fitness value the
evolutionary algorithm could achieve.

The trajectory shown in Fig. 4(a) is used as
the only input that feeds the evolvable recep-
tive fields. The evolutionary algorithm, after 1500
epochs/generations of evolution using a population
of 100 individuals, obtains a feasible near-optimal
distribution (Fig. 6(a)). As it is shown, recep-
tive fields which are placed near range extremes
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[rmax–rmin] have a wider tail in comparison to
equally distributed receptive fields (general solution)
in which receptive fields around range extremes are
under-utilized. The evolutionary algorithm optimizes
the width of the receptive field at the extremes with
two purposes; to cover a wider area and to provide
a spike contribution in a more extended range. The
evolutionary algorithm also distributes central recep-
tive fields in an equally distributed way but with
different widths; equally distributed central fields
ensure proper range coverage in a rectilinear trajec-
tory, different widths make distances between differ-
ent stimuli not linearly related with the estimation
being encoded.

3.1.1. Metrical discrimination analysis

In order to validate the previously presented EA
optimization process, a metrical analysis is needed
to have a proper tool for discerning a good solution
from a bad one.

A metrical discrimination analysis allows us to
numerically measure the main features of a given
solution. As was established in Sec. 2.4, the desirable
objective to achieve, broadly speaking is to generate
a spike population set over time that represents the
current sensorial state in an unambiguous way. That
is, each sensorial state (trajectory state) should have
a sole spike train representation which differentiates
it from others. Consequently, it is necessary to prove
that the evolved solution presents this discrimina-
tion feature between spike trains. Numerically, the
EA maximizes the fitness function to enhance inter-
stimulus distance. As a result, a given number rep-
resenting this fitness is obtained, but, how does this
inter-stimulus distance behave over time? How long
does the discrimination between spike trains take?
How can we evaluate that we have obtained an unam-
biguous spike train representation?

The metrical discrimination analysis of Eq. (13)
gives answer to these questions.

[Φmax|min]i(n TimeWindow−1,n Step),j(n Time Window,n Step)
i(1,1),j(i+1,1)

,

(13)

where j and i are the sub-indexes that indicate the
pair of selected spike trains to calculate the van
Rossum distance Dvr(ri, rj). n Step is the integration
step number within a time window. For instance, a
time window of 40ms, assuming an integration step

of 1 ms, has 40 steps, i.e. n Step runs from 1 to 40.
Finally, nTimeWindow is the index within the num-
ber of time windows into which a certain trajectory
can be divided. For instance, a 1 s trajectory can
be divided in 25 time windows of 40ms each (thus,
nTimeWindow runs from 1 to 25). As an example,
ri = (1, 1) value corresponds to the set of spikes
belonging to the first spike train of the first time
window (0 s to 0.04 s) that are located in the first
integration step (0 s to 0.001 s) (Fig. 7).

Since the stimulus changes along the trajectory,
we can measure the inter-stimulus-distance in each
time window. The first spike train belonging to the
first 0.04 s time window is compared with the sec-
ond spike train belonging to the second 0.04 s time
window. The first spike train is then compared con-
secutively with the third spike train, then with the
fourth, and so on. After this, the second spike train is
compared successively with the third, the fourth, the
fifth spike train, and so on. This is repeated for each
spike train, thus making an exhaustive comparison
process.

As a result, a minimal-inter-stimulus-distance
curve is obtained. As it is shown in Fig. 8(a), Eq. (13)
is applied to the EA solution (Fig. 6(a)). We can see

Fig. 7. Metrical discrimination analysis. Van Rossum
distance is calculated between two spike trains (ri, rj)
of different time windows (i, j) along n integration Steps
within their corresponding time windows.
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Fig. 8. (Color online). Inter-stimulus distribution function for different receptive fields illustrates the discrimination
capability of the system (a 10 scale factor has been used to better plot the minimal-inter-stimulus-distance in the left
panels). (a) Evolved receptive fields. (b) Equally distributed receptive fields. (c) and (d) Equally distributed receptive
fields with a better coverage at both ends of the range. (e) Equally distributed receptive fields with a decreasing coverage
of the range from the ends to the center.

the minimal-inter-stimulus-distance behavior. Con-
sidering a 40ms time window, we can ensure that
it takes 34ms (first nonzero value for minimal-inter-
stimulus-distance) to distinguish any two spike trains
(i.e. the actual state — joint angle — in the tra-
jectory) of the generated spike set when a rectilin-
ear trajectory is performed and the state variables

(joint angle in these experiments) are translated into
spikes through the evolved receptive fields given by
the EA. A nonzero value for minimal-inter-stimulus-
distance means a perfect discrimination. The earlier
this nonzero value is obtained, the sooner it is possi-
ble to distinguish a spike train from any other. That
means that we can ensure a perfect discrimination
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between any two spike trains over any 40ms time
window because discrimination actually takes time
before 34ms.

We can also verify that the maximum minimal-
inter-stimulus-distance is 0.0434 and it is achieved
around 40ms. This maximum value represents an
estimate of how easy the discrimination between
different stimuli becomes in different time windows
(sensory states).

To establish a comparison, this solution has been
compared against other four solutions; an equally
distributed receptive field solution (Fig. 8(b)), two
different equally distributed receptive field solutions
with a better coverage at both ends of the range
(Figs. 8(c) and 8(d)), and finally, an equally dis-
tributed receptive field solution with a decreasing
coverage of the range from the ends of the range to
the center. The second solution is a hand-calibrated
solution; the third and fourth solutions try to emu-
late the behavior of the solution obtained by the EA.
Receptive fields placed near both ends of the range
are modified in order to ensure a better response
to initial and final trajectory segments and the fifth
solution not only tries to mimic the behavior of the
EA solution at both ends of the range but also the
behavior at central range positions, the receptive
field width is modified from the range of extreme
positions to the center position; the higher the dis-
tance of the receptive field center from the range cen-
ter value, the wider receptive field is used. Different
widths covering center range values ensure quite dif-
ferent responses to slightly different entries.

As is shown in Fig. 8(a), in order to distin-
guish any two spike trains (microstates) of the gen-
erated set, it takes over 0.034 s. A maximum of
0.434 (0.0434 · numMossyFibers) in the minimal-
intra-stimulus-distance is achieved (this value is con-
sistent with the result obtained by the EA solution).
Figure 8(b) shows a constant zero minimal-inter-
spike-distance; equally, distributed receptive fields
are not able to properly discriminate two spike trains
of the generated spike set.

On the other hand, although solutions of
Figs. 8(c) and 8(d) really do a discrimina-
tion between spike trains (minimal-inter-stimulus-
distance does not remain constantly zero) even
sooner than the evolved solution (Fig. 8(d) at 0.03
s), neither of them achieves a maximum value of
the minimal-inter-stimulus-distance near 0.434. The

obtained maximum values are around 50% lower, so
a better coverage of the whole range is implemented
by the evolved solution.

Finally, the last solution (Fig. 8(e)) shows the
same problem as the previous one, whereas a dis-
crimination is possible even sooner than the evolved
solution and the maximal-inter-stimulus-distance is
better than Figs. 8(c) and 8(d) (blue dashed curve),
the maximum value of the minimal-inter-stimulus-
distance is 66% less than the evolved solution. The
evolved solution still represents a better way to cover
the whole range of joint angles; the evolved solution
not only ensures a perfect discrimination between
spike stimuli but also ensures a maximal distance
between their spike representations (Fig. 9).

3.2. Analysis of evolved receptive fields
in multiple trajectories

Once the proposed methodology has been shown to
succeed in a single-trajectory scenario, now the EA-
based optimization methodology is generalized to
different trajectories. All the trajectories illustrated
in Fig. 1 are used.

In this scenario, the solutions will not be easily
compared to manually handcrafted ones capturing
the essence of the evolved solutions. The EA has
been set to manage up to 30 possible receptive fields
to be conjointly evolved. After the EA evolves a pop-
ulation of 100 individuals over 2000 epochs, a final
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0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Minimal Inter-Spike Distance along Time Window 

D
vr

Fig. 9. Minimal-inter-stimulus-distances (Dvr) achieved
at time 0.04 s by different by different receptive field
distribution solutions. Cases A, B, C, D, and E corre-
sponding to the respective (a), (b), (c), (d), and (e) solu-
tions illustrated in Fig. 8.
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Fig. 10. Evolved receptive field solution. (a) The EA uses the multiple trajectory benchmark to cover the defined
workspace [rmax–rmin]. Through evolution, the EA obtains a receptive field distribution that ensures discrimination
between any spike-train mossy fiber produces (Fig. 2). (b) Fitness evolution. Fitness curve converges properly after 1000
epochs. (c) Final evolved distribution of the receptive fields.

evolved solution is obtained as is shown in Fig. 10.
Figure 10(c) shows the resulting receptive fields after
the optimization process.

We can see that the EA has concentrated the
receptive field distribution in the [2/3rmax–2/3rmin]
range. In this range region, the majority of the tra-
jectories have sharp changes in their values; having
a pretty concentrate centroid distribution right in
[2/3rmax − 2/3rmin] values of the range ensures a
proper population of sensitized neurons (their base
current forces neurons to be closer to their firing
state) to fast changes in the input value. That is,
fast changes in trajectory values involve very differ-
ent generated spike trains, which is what we are look-
ing for in this area.

On the other hand, at the end of the range val-
ues, the EA has increased the width of the receptive
fields providing a sparse distribution of them. Placing
those wide receptive fields at the ends of the range is
a way to distinguish the extreme areas in the spik-
ing code. This involves that, at least, immediately,

one neuron is firing in this area, being accompa-
nied by the rest of firing neurons with certain delays
no longer than 40 ms (time windows) due to the
width of the central receptive fields. Central recep-
tive fields are wide enough to be sensitive to input
values belonging to both ends of the range areas.

3.2.1. Metrical discrimination analysis

The metrical discrimination analysis extended to the
multiple trajectories benchmark is given by Eq. (14).

1
n

n∑
1

[Φmax|min]i(nTimeWindow−1,n Step),j(nTimeWindow ,nStep)
i(1,1),j(i+1,1)

,

(14)

where j and i are the sub-indexes that indi-
cate the pair of selected spike trains to calculate
the van Rossum distance Dvr(ri, rj). As previously
described, nStep is the integration step number
within a time window. nTimeWindow is an index
within the number of time windows in which a
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certain trajectory can be divided into, and finally, n

is the number of the trajectories of the benchmark.
This equation is computed once in every trajectory
obtaining a set of curves (a curve per trajectory).
Each curve represents the behavior of the minimal-
inter-stimulus-distance over each 0.04ms time win-
dow along the trajectory (using the receptive field
solution given by the EA). As it was done in
Sec. 3.1, the spike train set generated by a trajec-
tory is computed according to Eq. (13). As a result,
a minimal-inter-stimulus-distance curve is obtained
per trajectory.

A final mean curve is calculated using this set
of minimal-inter-stimulus-distance curves applying
Eq. (14). As it is shown in Fig. 11, the evolved solu-
tion has been compared against a designed solution
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Fig. 11. Inter-stimulus distribution obtained by the EA using the whole set of benchmark trajectories. (a) Evolved
receptive fields. (b) Equally distributed receptive fields. (c) Equally distributed receptive fields with a better coverage at
both ends and in interval [2/3rmax–2/3rmin] of the range.

which consists of equally distributed receptive fields
(other equally distributed solutions with different RF
widths were tested but these experiments did not
provide any new further information) and also, to a
solution manually implemented which tries to emu-
late the EA solution. This illustrates how the EA
solution itself can be used, or how it is also possible
to try to emulate it (after interpreting it) towards
designing efficient hand-crafted solutions based on
the EA guidance.

Figure 11(a) shows the evolved solution and its
performance. The discrimination condition between
any pair of spike trains from the generated spike
set using evolved receptive fields is possible after
0.014 s in average with a maximum at the minimal-
inter-stimulus-distance of Dvr = 0.0476. In contrast,
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the equally distributed receptive field standard
solution presents a maximum value at minimal-inter-
stimulus-distance of Dvr = 0.00138. The discrimi-
nation between any pair of spike trains is possible
after 0.032 s on average. These values are clearly
improved by the evolved solution. Finally, equally
distributed receptive fields with a better coverage at
both ends and in interval [2/3rmax–2/3rmin] of the
range are able to discriminate any pair of spike trains
from the generated spike set after 0.018 s on average.
The maximum value of the minimal-inter-stimulus-
distance at each time window is Dvr = 0.0356.
This maximum value of the minimal-inter-stimulus-
distance is larger in the evolved solution than in the
others; therefore, the discrimination process is not
only executed sooner, but also with higher inter-
stimulus-distance values (which represent a larger
margin that is useful in the case of noise in the
sensory signal estimation). The EA solution not
only ensures an earlier discrimination between spike
trains, but also increases the distance between any
pair of spike trains.

4. Conclusion

A methodology for efficiently representing incoming
encoder signals from different links in terms of spikes
in a plausible robot scenario is presented. Several
approaches in controlling robots with cerebellum-like
networks have been proposed in the literature26–29

(all of them keeping classical control theory in mind).
Little attention has been given to efficient sensory
representation in these approaches. To that aim, an
evolutionary algorithm as an optimization engine
has been proposed in this contribution. In this way,
a goal function that captures how sensory infor-
mation can be efficiently represented in terms of
spike trains was defined, maximizing the minimal-
inter-stimulus-distance when performing movements
(benchmark trajectories). In the framework of exper-
iments with cerebellar-based robot control1–3,13,72,73

or other bio-inspired experiments,74,75 the presented
contribution will allow at initial stages of the adap-
tation mechanisms of the cerebellum to distinguish
more accurately specific instants along the trajecto-
ries in which potential corrections or actions need to
be performed.

The receptive fields in our sensory input layer
have been evolved. We focus on the way in which

these receptive fields have to be distributed both
to encode each sensorial state in an unambigu-
ous way and to enhance information transfer (in
terms of entropy) between mechanoreceptor signals
and their spike representations. The receptive field
configuration task is carried out by the aforemen-
tioned Evolutionary Algorithm. Such an algorithm
evolves receptive fields along the robot-link work
space according to a goal function that takes into
account the metrical properties of the spike train
space.

Beyond this specific contribution, this work also
presents a general methodology of using EAs for
optimization purposes when addressing reverse engi-
neering of biological systems. In this scenario, it is
important to implement a goal function that cap-
tures the essence of attributed properties of the sys-
tem which is being optimized. In our case, the goal
function is the optimization of sensory representa-
tion in terms of spikes with inter-spike discrimina-
tion capability along movement trajectories. This
required the definition of a metric to allow the eval-
uation of the different candidate solutions, in order
to derive a final fitness function for the EA. The def-
inition of a fitness function that allows convergence
through an EA is not straight forward; it required a
preliminary experimental stage in which preliminary
simulations where done with a single trajectory in
which the results (and obtained solutions in terms
of receptive field configuration) were easy to inter-
pret. The searching space in this kind of problems
and the computational cost of spike train distances
may require the parallelization of the EA, as it has
been done in this work.

This technique will be included into robotic
experiments with cerebellar-like modules as correc-
tive engines to evaluate how an optimal sensory rep-
resentation facilitates an effective adaptation at the
cerebellum. Thus, it will be applied to object manip-
ulation experiments with an adaptive cerebellar-like
module. In previous experimental studies,76–78 the
translation from analog robotic sensory signals to
spike trains has been done manually (through a
manually designed receptive filter configuration) to
facilitate an easy discrimination when performing
different trajectories.

We will also apply the presented technique
to tactile sensors79–82 to maximize information
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transmission as discrimination between microstates
in the framework of sensing tasks.

We will also study the possibility of introducing
an STDP83 law that increases the performance of the
evolved system in such sensing task frameworks. Fur-
thermore, we will apply other parallel optimization
schemes84,85 in order to scale up the complexity of
the representations that can be studied.
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84. J. L. Redondo, I. Garćıa and P. M. Ortigosa, Paral-
lel evolutionary algorithms based on shared memory
programming approaches, J. Supercomput. 1 (2009)
1–10.

85. J. L. Redondo, B. Pelegŕın, P. Fernández, I. Garćıa
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