
Robotics and Autonomous Systems 62 (2014) 1702–1716
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Integrated neural and robotic simulations. Simulation of cerebellar
neurobiological substrate for an object-oriented dynamic model
abstraction process
Niceto R. Luque a,∗,1, Richard R. Carrillo a,1, Francisco Naveros a, Jesús A. Garrido b,
M.J. Sáez-Lara c

a Department of Computer Architecture and Technology, CITIC, University of Granada, Periodista D. Saucedo Aranda s/n, E-18071 Granada, Spain
b Brain Connectivity Center, IRCCS Istituto Neurologico Nazionale C. Mondino, Via Mondino 2, Pavia, I-27100, Italy
c Department of Biochemistry and Molecular Biology, University of Granada, CIBM, PTS, s/n, E-18071 Granada, Spain

h i g h l i g h t s

• We integrated EDLUT neural simulator within a simulated robotic environment.
• As an embodiment example, we implemented a cerebelar-like structure controlling a simulated arm.
• The neural robotic simulator combines signals in analog/spike domains.
• Neural simulator, interface, and robotic platform operate conjointly in real time.

a r t i c l e i n f o

Article history:
Received 11 February 2014
Received in revised form
21 July 2014
Accepted 5 August 2014
Available online 19 August 2014

Keywords:
Neurobotics
Cerebellum
Spiking neural network
Close-loop simulation
Embodied neuroscience

a b s t r a c t

Experimental studies of the Central Nervous System (CNS) at multiple organization levels aim at under-
standing how information is represented and processed by the brain’s neurobiological substrate. The in-
formation processed within different neural subsystems is neurocomputed using distributed and dynamic
patterns of neural activity. These emerging patterns can be hardly understood by merely taking into ac-
count individual cell activities. Studying how these patterns are elicited in the CNS under specific be-
havioral tasks has become a groundbreaking research topic in system neuroscience. This methodology
of synthetic behavioral experimentation is also motivated by the concept of embodied neuroscience, ac-
cording to which the primary goal of the CNS is to solve/facilitate the body–environment interaction.

With the aim to bridge the gap between system neuroscience and biological control, this paper
presents how the CNS neural structures can be connected/integrated within a body agent; in particular,
an efficient neural simulator based on EDLUT (Ros et al., 2006) has been integrated within a simulated
robotic environment to facilitate the implementation of object manipulating closed loop experiments
(action–perception loop). This kind of experiment allows the study of the neural abstraction process of
dynamic models that occurs within our neural structures when manipulating objects.

The neural simulator, communication interfaces, and a robot platform have been efficiently integrated
enabling real time simulations. The cerebellum is thought to play a crucial role in human-body interaction
with a primary function related to motor control which makes it the perfect candidate to start building
an embodied nervous system as illustrated in the simulations performed in this work.

© 2014 Elsevier B.V. All rights reserved.
Abbreviations: CNS, Central Nervous System; PF, parallel fiber; MF, mossy fiber;
CF, climbing fiber; GC, granule cell; GoC, Golgi cell; PC, Purkinje cell; DCN, deep
cerebellar nuclei; IO, inferior olive; MAE, mean average error.
∗ Correspondence to: Department of Computer Architecture and Technology,

University of Granada, Periodista D. Saucedo Aranda s/n, E-18071 Granada, Spain.
Tel.: +34 0 958241776.

E-mail address: nluque@ugr.es (N.R. Luque).
1 These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.robot.2014.08.002
0921-8890/© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Computational models of various brain regions have been de-
veloped and studied for more than thirty years in order to ana-
lyze central brain functions. Computational neuroscience (CN) is
the natural complement of experimental brain research, since it fo-
cuses on specific mechanisms andmodels which are only partially
observed in anatomical or physiological studies. In particular, the
cerebro-cerebellar loop has been extensively modeled since Marr

http://dx.doi.org/10.1016/j.robot.2014.08.002
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2014.08.002&domain=pdf
mailto:nluque@ugr.es
http://dx.doi.org/10.1016/j.robot.2014.08.002


N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716 1703
and Albus [1,2], providing elegant explanations on how the for-
ward controller operation of the cerebro-cerebellar loop seems to
work. Nevertheless, these computational theories tend to focus on
one part of the cerebellar circuitry and then, to extrapolate the ob-
tained conclusions to the whole cerebro-cerebellar system. Simu-
lating nervous systems ‘‘connected’’ to a body (agent or robot with
sensors and actuators) is of interest for studying how certain ca-
pabilities of the nervous system (e.g. the role of the cerebellum
in coordinated movements and object manipulation) are based on
cellular characteristics, nervous system topology, or local synaptic
adaptation mechanisms. This represents an integrative approach
which aims to build the bridge between task specific experimen-
tation (equivalent to ‘‘awake animal testing’’) and system neuro-
science models.

This integrative approach allows us to study the role of certain
nervous systems within ‘‘behavioral tasks’’ [3]. For this purpose, it
is crucial to study nervous system models within the framework
of their interaction with a body (sensors and actuators) and the
environment.

This paper describes an integrated approach to the cerebellar
circuit modeling within real time ‘‘behavioral tasks’’. The paper
describes briefly: (a) a cerebellar model based on point neurons
capable of being simulated in real-time. The model maintains
biological interconnectivity ratios in functional medium-scale
networks (rather than an ad-hoc neural network particularly
designed for a specific behavioral task) that are embedded in
biologically plausible control loops. (b) Testing the role of plasticity
at parallel fibers-Purkinje cells. (c) Embedding the neural system
model into a cerebro-cerebellar control loop connected to a Light
Weight Robot (LWR) performing repetitive fast manipulations
along benchmark trajectories. In order to address these three aims,
we have integrated a neural simulator based on EDLUT [4] with a
simulated robotic environment to facilitate the implementation of
object-manipulating closed-loop experiments (action–perception
closed loops).

These experiments allowus to study the neural abstraction pro-
cess of dynamic models (of objects being manipulated) that occurs
within our neural structures in fast manipulation tasks [5–7]. The
neural simulator, the communication interface, and the simulated
robotic platform have been developed and integrated taking into
account computational efficiency as a major requirement in order
to enable real time simulations. This platform allows us to study
different neural representation and processing schemes in a spe-
cific task within a brain–body interaction framework.

1.1. Functional cerebellar models; a brief overview

Among Embodied System Neuroscience models, the well-
organized structure of the cerebellum has received special at-
tention from researchers belonging to very different fields. On
one hand, neurophysiologists have studied and proposed detailed
models and descriptions according to experimentally recorded
cells and synaptic properties. However, it is not yet clear how spe-
cific properties of these current detailed models facilitate specific
tasks at a behavioral level. On the other hand, engineers have pro-
posed artificial approaches (only relatedwith biology at a very high
level) for biologically relevant tasks such as accurate and coor-
dinated movements. Based on these opposed approaches, several
cerebellar modeling frameworks have been proposed:

In state-generator models, the granule cell layer presents on/off
type ‘‘granule’’ entities that provide a sparse coding of the state
space (Marr–Albus Model [1,2], CMAC [8–10] model, or Yamazaki
and Tanaka model [11–14]). These models succeed in explaining
some traditional cerebellum-involving tasks such as eyelid con-
ditioning [15] or motor control tasks [6,7,16]. In functional mod-
els, only the functional abstraction of specific cerebellar operations
is considered: MPFIM model [17], Adaptive Filter model [18–22],
APG model [23], or LWPR model [24,25]. Although in some cases,
these models are also used to explain how the cerebellum works,
these can be seen as problem solving approaches (that use internal
structures not constrained to biologically plausible features). These
functional models are also used to study the potential role of the
cerebellum in tasks such as eyelid conditioning, the vestibule ocu-
lar reflex (VOR), or movement correction [24,25]. Finally, cellular-
level models capture the biophysical features of the cerebellar
neuronal topology and processing, and can be evaluated in the
framework of neurophysiological experiments. These models aim
to be as biologically plausible as possible. But due to their inherent
complexity, their application in the context of large-scale cerebel-
lar modeling and computation remains limited. The very first ap-
proximations in this field were developed based on the simplified
models of Schweighofer–Arbib [26,27].

1.2. How to embody the cerebellar circuitry

The cerebellar network has been at the core of neurocomputa-
tional theories since the 1960s, when Eccles proposed the Beam
Theory [28] and Marr and Albus, the Motor Learning Theory [1,2].
Later on, Ito developed the forward controller theory [4,29–32].
Since then, the view has been crystallized on two main con-
cepts that can be synthesized as follows; the way the cerebel-
lum operates is by decorrelating the inputs in the granular layer
and detecting known patterns in Purkinje cells. Pattern recogni-
tion is regulated by memory storage at the parallel-fiber-Purkinje-
cell synapse. When unfamiliar patterns are detected repeatedly,
the Purkinje cells change their firing rate and regulate activity in
the deep cerebellar nuclei (DCN), thereby emitting the corrective
terms used for highly accurate motions (skillful control perfor-
mance).

Despite its attractiveness and simplicity, this theory only par-
tially accounts for the capabilities of the cerebellum. Furthermore,
recent experimental data indicate that the cerebellar system is
muchmore complex than initially stated. Just to make a very short
survey, the mechanisms of the granular layer go far beyond sim-
ple decorrelation [33], long-term synaptic plasticity does not occur
only at the parallel fibers (PF) [33–35], the inferior olive (IO) oper-
ates as a complex timing system and not simply to drive Purkinje
cell plasticity [36], the Purkinje cells and the DCN cells have op-
erative states that go far beyond the concept of firing rate regula-
tion [37]. The core idea is that our knowledge on the functioning of
neuronal networks of the cerebellum is still rather vague, and that
we have to develop new computational tools to investigate cere-
bellar network dynamics beyond the current existing paradigms.

The available neurophysiological data (which is essential for
understanding the functional organization of the cerebellum and
related structures) has to be analyzed to investigate the particular
processing capabilities of each neuron and of its internal dynamics.
Emphasis must be put on proving how the network processing
capabilities are supported by the low-level characteristics of
each neuron type. Many of the specific cerebellar neural types
have already been implemented in Python–NEURON–EDLUT
software simulators [38,39] and there are even specific repositories
gathering different kinds of models [40,41].

1.3. Modeling the cerebellar circuits

When modeling the cerebellar circuit with a bottom-up ap-
proach, the cerebellar network needs to be modeled aiming at the
construction and generation of a complete cerebellar functional
network, tested in realistic functional conditions and endowed
with plasticity rules. This process demands the comprehension of



1704 N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716
the interplay that occurs between the Granular-and-molecular-
layer subcircuit and the PC–DCN–IO subcircuit.

Whilst the granular layer and molecular layer neurons can be
largely reconstructed starting from precise existing models, the
DCN-and-IO subcircuits are not modeled in detail. Therefore, the
PC–DCN–IO circuit requires basic modeling to achieve functional
properties. An initial model of the DCN can be constructed based
on [42,43]. As a starting point, the IO can bemodeled at a functional
level, i.e. as a module translating ‘‘error related signals’’ into
activity that modulates learning at the PF–PC synapses. Also at
this stage, although different plasticity sites have been reported
[34,35], most cerebellar functional models are based solely on the
PF–PC adaptation mechanismmodulated by the IO activity (which
delivers the teaching signals).

Once all the subcircuits and long-term synaptic plasticity are
implemented and tested separately, the functional operation of a
complete circuit can be tested. The first step lies on developing
an appropriate connectivity between the modular subcircuits. The
connection map between the IO and PCs via climbing fibers, the
convergence of PCs to DCN neurons [44] and the mossy fiber (MF)
projections to the DCN [45], and the granular layer have been
extensively described in the literature and should be reconstructed
respecting the known convergence/divergence ratios.

2. Material and methods

2.1. The real-time neural simulator. EDLUT

Common event-driven simulators [46,47] use simple neural
models whose dynamics are described by equations which can be
discontinuously evaluated at arbitrary times (e.g. current based
integrate-and-fire models). But even when using simple neural
models, the firing-time prediction which is necessary for an event-
driven simulation may be complex [48,49].

An EDLUT (Event-Driven neural simulator based on LookUp
Tables) was implemented [4] to simulate neural models whose
internal dynamics is defined by a set of differential equations
(for instance, the Hodgkin and Huxley model [50]) adopting an
event-driven simulation scheme. This software is an open source
project [51] for efficient simulation of biological neural networks.
It is of particular interest in the field of neurobotics and embedded
neural computing in which real-time processing is required, for
example, for experiments which include perception–action loops.

EDLUT uses an intensive preliminary simulation stage in which
a neural model is characterized, i.e. massive simulations of a sin-
gle cell are done with different initial conditions. At this stage,
samples of the neural variables at different times are stored
in lookup tables. This preliminary stage can be seen as a cell
model compilation stage. These tables are calculated using time-
consuming numerical analysis (e.g. Runge–Kutta method). How-
ever, once they are generated, the network simulation can be run
efficiently through the event-driven method, just by accessing ta-
bles when the neural state must be updated or predicted.

EDLUT uses lookup tables which store all the possible values
(with certain precision) of the neural-model state variables [52] in
addition to the future states (firing times) [53]. Therefore, a whole
neural model is encoded in each set of model-characterization
tables. In this way, the simulator takes advantage of the increasing
memory resources available to perform efficient simulations
with very limited computation requirements. The event-driven
simulation scheme based on lookup tables uses memory access
intensively, instead of CPU computation power for the neural
variable updates.

The initial EDLUT processing scheme allowed fast simulation of
complex neural models. Nonetheless, this scheme is constrained
by the number of state variables of a neural model because this
determines the number of dimensions of the required lookup
tables. But in later versions [54], the EDLUT was upgraded to
provide a hybrid time-and-event driven simulation method. This
hybrid scheme allows the concurrent simulation of some neuronal
models using the event-driven method (the models which can be
translated into lookup tables) and other models using the time-
driven method in the same network.

2.2. The cerebellar model

We have used leaky integrate-and-fire neural models (LIF) [50]
whose synapses are modeled as conductances. The general model
has been then adapted for different neural types. The LIF neural
state is characterized by the membrane potential (Vm-c) expressed
by Eq. (1):

Cm
dVm-c

dt
= gAMPA(t)(EAMPA − Vm-c) + gGABA(t)

× (EGABA − Vm-c) + Grest(Erest − Vm-c) (1)

where Cm stands for the membrane capacitance, EAMPA and EGABA
denote the reversal potentials of the synaptic conductances,
and finally, Erest represents the resting potential (being Grest the
conductance responsible for the passive decay term towards the
resting potential). The gAMPA and gGABA conductances integrate all
the contributions received through individual synapses and are
defined as decaying exponential functions. The parameters of the
neural model [5–7] and a more detailed description can be found
in [5–7,51].

Therefore, the state of a neuron is defined with just three
variables:

Vm-c represents the membrane potential. When this variable
reaches a specific threshold, the neuron generates an output
spike.
gAMPA and gGABA represent excitatory and inhibitory conduc-
tances respectively that affect the membrane potential. These
conductances decrease exponentially in each integration step
and increase proportionally to the synaptic weight of their con-
nections when an input spike arrives.

To solve the LIF neuron model differential equation, the EDLUT
simulator incorporates different integrative methods. This differ-
ential equation is processed off-line using a short integration step
to achieve good accuracy (it does not directly affect the computa-
tion time during systemneural simulations, since the neuralmodel
is computed and stored in lookup tables in a preliminary neural
characterization stage).

All the different characterized neural types have been intercon-
nected following a cerebellar topology structured intomicro-zones
distributed in different layers, as described below (Fig. 1):

Mossy fibers (MFs) (248). These mossy fibers drive the contex-
tual information and sensory joint information (related with the
manipulated object and desired/actual positions and velocities).
The mossy fiber model is based on leaky integrate-and-fire neuron
dynamics whose input current is provided by a set of overlapping
receptive fields covering the joint value space of the input signals
(see Fig. 2).

Granular layer (GCs) (1500). This layer behaves as an abstraction
of a simplified cerebellar granular layer. The information provided
by the mossy fibers is translated into a sparse representation. Each
granular cell (GC) receives four excitatory input connections; three
connections randomly chosen from joint-related mossy fibers and
the other one, from a context-related mossy fiber [7].

Parallel fibers (PFs) (1500). They represent the output axons of
the granular layer. The manipulated object model abstraction is
stored in learned weights at the PF–PC connections.



N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716 1705
Fig. 1. Cerebellar architecture. Color representation indicates signals from different sources such as different cuneate receptive fields or proprioceptors. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Population coding of input (proprioceptors) signals. The joint angle position (input signal) provided by a joint encoder which covers the joint range is translated
into a population coding whilst a certain trajectory is followed using a set of tuning receptive fields (Gaussian like curves) which represent the current injected into spiking
neurons by different sensory receptors (proprioceptors). Each proprioceptor’s value (output signal) is integrated using an integrate-and-fire neuron model and determines
the activity response of an input neuron (as is the case of Mossy Fiber neurons belonging to the cerebellar circuitry). Lower plots illustrate how two trajectories (encoder
angle varying in time) defined in a single joint produce spiking patterns when the contributions to the integrate neurons are integrated through the sensory receptive fields.



1706 N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716
Climbing fibers (CFs) (48). The climbing fibers are the axons of
the Inferior Olive cells. This layer consists of 6 groups of 8 climbing
fibers each. The IO output (encoding a teaching signal related to
the error) is translated into spikes using leaky integrate-and-fire
neuron dynamics whose input current is in this case proportional
to the error signal. The CFs drive the IO outputs to the Purkinje cells
for supervised learning at PF–PC connections. More details on this
learning rule can be found in [6].

Purkinje cells (PC) (48). These cells are divided into 6 groups
of 8 cells. Each GC is connected to 80% of the PCs which are also
receiving their corresponding teaching signals from the CFs.

Deep cerebellar nuclei cells (DCN) (24). The cerebellar output is
generated using 6 groups of these cells (2 groups per joint) whose
activity is capable of providing corrective torques for a specified
cerebellar input. Corrective torque values per joint are encoded by
a couple of these groups, one group compensating positive errors
(agonist) whilst the other one is dedicated to compensate negative
errors (antagonist). Each DCN neuron group receives excitation
from everyMF cell and inhibition from the two corresponding PCs.
The sub-circuit PC–DCN–IO then is organized into six microzones;
three of them generating joint positive corrections (one per joint)
and the other three, generating joint negative corrections (one per
joint). Mind that as it will be explained below, we use three joints
in our robot experiments.

2.3. Neural population coding

Neural population coding is traditionally used for sensorimotor
representation. Eachneuronbelonging to a certain systempresents
a distribution of responses over some set of inputs. Hence, the
response of many system neurons over a set of certain inputs
represents the system state [55,56]. In a reaching movement, the
arm direction is encoded bymeans of neuronswhose input current
changes with the cosine of the difference between the stimulus
angle and the preferred direction of the cell [57] (Cosine tuning).
Each cell has a preferred direction and receives input current
depending on how a movement is aligned to its preferred feature.
However, a simple reaching movement involves extracting spatial
information including visual acquisition of the target, coordination
of multi-modal proprioceptive signals, and a proper motor
commandgeneration to drive a propermotor response towards the
target [58]. Common reachingmovements towards a target thatwe
have already seen involve an internal representation of the target
and limb positions, and also a coordinate transformation between
different internal reference frames. A spiking population coding is
used as internal representation and can be adapted as indicated
below to be embedded into a control loop.

The integration of computational models with neurophysiolog-
ical observations in order to understand themain problems inmo-
tor control requires not only the cerebellum functionality to be
considered but also its biological architecture (cell-network topol-
ogy). This requires the development of two ‘‘translation processes’’
in order to interact with a robot agent: (1) Translation from ana-
log domain sensor inputs to spike based patterns compatible with
a spiking cerebellar network. (2) Translation from spike domain
cerebellar outputs to analog domain actuator commands to be de-
livered to the robot agent.

2.3.1. From sensors to spikes
When a target reaching movement is executed, different body

parts, such asmuscles, tendons, or joints are articulated depending
on their body location [59] along the followed trajectory. Sensory
proprioceptors are activated according to the movement; thus, a
time-varying set of stimuli is produced, and its corresponding neu-
ral population varying activity is generated. In contrast, in a robot
scenario, the only available proprioception sensory information is
supplied by an encoder output per link. Hence, a translation from
the joint position/velocity measures to a time-varying set of stim-
uli is required. At this point, finding out an optimal biologically
plausible encoding scheme that allows ‘‘biological decoders’’ (as
the ones we assume at the granular and molecular layers of the
cerebellum) to take advantage of the representation is a non-trivial
issue. It is assumed that the firing rate of an individual sensory re-
ceptor follows a neural response which is characterized by Eq. (2)
(also equivalent to a cosine tuning curve, that is, the firing rate of
the neurons varies with the angle between the preferred direction
of the sensory receptors and the sensed position) [60]. Therefore,
a reaching movement execution will be represented with a sparse
population of active cells which are varying with time. This coding
mechanism leads to a representation of the current sensorial state
during the trajectory execution in an unambiguous way.

The output of each receptor is given by Eq. (2);

INi (t) = r0 + rmax


n

e−
(θ−θpref −2πn)

2

2σ2 (2)

where [r0, rmax] is the joint range in radians, θ is the actual position,
θpref is the preferred direction of the receptor, σ is the amplitude of
the receptive field associated to the receptor, and finally, 2πn is a
subtractive term used to refer the actual position to the first-360-
degrees (the maximal range of any revolute joint is 360°).

Receptors are distributed along the range of each joint, being
their receptive fields overlapped (as peripheral nerve receptive
fields are). Each value of a proprioceptor output signal is integrated
using an integrate-and-fire neuron model whose dynamics is de-
fined in Eq. (3) (see illustration in Fig. 2). In the case of an arm sys-
tem, this determines the output activity that drives the Cuneate
Nucleus (CN) activity emulating the way the Mossy Fiber activ-
ity from cells in the CN handles information from forelimb muscle
spindles [61].

τmi
dvi

dt
= −vi (t) + RiINi. (3)

Related to the leakage integrate and fire cell dynamics, τmi is the
resting time constant, vi themembrane potential, INi the input cur-
rent, and Ri is related to the resting conductance of the membrane.

2.3.2. From spikes to actuators, decoding the cerebellar output
Spiking modeled neurons elicit pulsed signals usually named

action potentials or spikes. It is believed that the shape of these
spikes only carries minimal information whilst the core of the in-
formation is carried by the spike time arrival [62,63]. The action po-
tential waveforms (voltage curve profile) elicited by those neurons
is usually translated into a set of binary symbols (0 or 1) represent-
ing an instant in which an action potential occurs (1) or does not
(0). The generated binary waveform conforms a spike train and the
obtainedpattern of spikes belonging to a certain time-framegener-
ates the spike binary code; the columns corresponding to the array
of spikes are also named neural activation patterns. It is then clear
that, somehow, the translation of these neural activation patterns
into meaningful analog output signals has to be implemented for
interfacing actual robot actuators with analog signals.

Assuming that the goal is to decode rather than to analyze
the behavior of biological neurons, it seems reasonable to use
a mathematical approach such as linear filtering, particularly, a
Finite Impulse Response filter (FIR), to accomplish this task [64].

Defining the spike train as x(t) =
N

j=t δ(t−tj), where tj stands
for the set of firing times of the corresponding neuron and being
the FIR response defined as h(t), then the stimulus can be written
as follows:

stimulus (t) = (h ∗ x) (t) =

N
j=t

h

t − tj


. (4)



N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716 1707
As noticed from Eq. (4), converting spike trains into analog signals
is a quite straightforward implementation. Nevertheless, despite
the widespread use of FIR filters for such purpose, an undesired
delay is introduced in the generated analog signal. This delay is
strongly related to the number of filter coefficients as well as to
the shape of the filter kernel. To mitigate this effect and to make
the conversion more efficient, an exponentially-decaying kernel
can be implemented, as seen in Eq. (5). Thus, at each time step,
the output signal value only depends on its previous value and
on the input spikes in the same time step. Therefore, this filter
can be implemented by recursively updating the last value of the
output signal. Actually, the choice of such exponential kernel is
double folded. The kernel is able tomitigate the delay problem and
bears a strong resemblance to postsynaptic currents [62,63], thus
facilitating a possible biological interpretation.

Kernel = h (t) = e−
M
τ (5)

whereM is the number of filter taps (one per integration step) and
τ is the decay factor.

2.3.3. Equivalent to an integrative neuron
Integrative neurons are capable of both analyzing and interpret-

ing sensory input just taking into account their actual state, the
incoming information, and their previous states as well. Once the
computation of those three elements is done, the resulting infor-
mation can be transmitted to motor neurons or other integrative
neurons. Assuming a leaky integrate-and-fire model for the inte-
grative neuron, the model looks like Eq. (3). This model forces the
input current to exceed a threshold Ith = Vth/Ri for the cell i to
fire; otherwise, it will simply leak out any charge in themembrane
potential. The firing frequency is thus defined in Eq. (6):

f (I) =


0, INi ≤ Ith
tref − τmi log


1 −

Vth

INiRi

−1

, INi > Ith
(6)

where tref is a refractory period and τmi is the resting time constant.
Solving the differential equation (3), the membrane potential is
expressed as follows:

vi(t) = RiINi(t) +
(VRest − RiINi(t))

e(t/τmi)
. (7)

The functionality of the selected FIR described in Eqs. (4) and (5)
can be read in terms of a biological interpretation just by mak-
ing an analogy between the proposed exponential-decaying kernel
and the behavior of an integrative neuron whose dynamics is de-
fined using Eq. (7) (stimulus(t) ≈ Vj(t)). The resulting shapes of
both sides of this analogy hold a remarkable resemblance due to
the exponential-decaying kernel that governs both the neural dy-
namics and the FIR kernel. An engineering strategy usually adopts
the FIR based approach, because it allows us to easily adapt the
output values to the control signal which is demanded for accurate
control. In such a way, the effect of each spike elicited by any cere-
bellar nuclei cell (output cerebellar cells) can be easily pondered
thanks to the FIR filter, thus facilitating the correlation between the
cerebellar output spikes and their corresponding corrective output
signals. It is clear then that this conversion can be also processed
by using any Integrate and Fire-like neuron; however, doing so, the
influence of each spike on the output does not always remain clear.

2.4. Cerebellar control loop; a plausible implementation

It is widely assumed that the cerebellum, acting as a control
module, is embedded in a feedforward control loop [65–67]. A
feedforward control system is able to evaluate both the incoming
sensory information from the environment and the information
provided by the system itself (proprioception) before the motor
control action is sent to the body. This means that the controller
manages the sensory information to deliver the best motor
commands to accomplish the desiredmovement. At that point, we
must bear in mind that once a pure feedforward system sends the
corresponding control actions, it is not possible to modify them.

On one hand, a feedforward control system is able to deliver
the precise set of motor commands for the body-plant and tomake
corrections during the movement without continuously checking
themotor control output [26,27]. Conversely, the feedforward con-
troller requires a previous trial-and-error learning process in order
to later recognize (in a recall stage) all the possible sensorial states
that may be reached. In a real manipulation task, the environmen-
tal conditions are constantly changing and the feedforward con-
troller must continuously tune its motor commands to cope with
these changeable environmental conditions [68]. According to this
scheme, the cerebellum operates as a feedforward controller for
the motor commands which are originated in the motor cortex
(Fig. 3). The brain is able to plan and learn the optimal trajectory
of a movement in intrinsic coordinates [23,68–71]. This operation
consists of three main tasks: the desired trajectory computation
in external coordinates, the task-space translation into body co-
ordinates, and the motor command generation [72]. In order to
deal with the aforementioned changeable environmental condi-
tions, the system needs to incorporate a Feedback-Error Learning
(FEL) scheme [73] by means of the cerebellum operating in con-
junctionwith a crude inverse dynamicmodel of the arm-plant [74].
It has been proposed that the association cortex provides the mo-
tor cortex with the desired trajectory in body coordinates. In the
motor cortex, the motor command is calculated by using an in-
verse dynamic armmodel (for a review, see [75]). The spinocerebel-
lum–magnocellular red nucleus system provides an accurate model
of musculoskeletal dynamics, which is learned with practice by
sensing the motor command consequences in terms of executed
movements (proprioception). The cerebrocerebellum–parvocellular
red nucleus system, which projects back to the motor cortex,
provides a crude inverse-dynamic model of the musculoskeletal
system, which is acquired whilst monitoring the desired trajec-
tory [73]. The crude inverse-dynamic model works together with
the dynamic model provided by the cerebellum embedded in a
feedforward control loop thus updating motor commands accord-
ing to predictable errors occurring when executing a movement. It
learns and stores models of the skeleto-muscular system provid-
ing the precise timing control of agonist–antagonist muscle pair
groups in addition to the needed force and stiffness control [76].
Obviously, the muscle flexion–contraction precise timing and the
needed force in a manipulation task depend on the weight to be
handled (more concretely, on the dynamic model of the object un-
der manipulation), the cerebellum being crucial for delivering this
proper timing, force, and coordination; these appropriate correc-
tive terms are learned through a trial-and-error process [68].

2.5. Simulated robot integration: robot and training trajectory

Behavioral experiments with an embodied cerebellar system
require the integration of a real or simulated robot in the control
loop. The simulated robot is intended to follow a specific trajectory
whilst the cerebellar model learns to provide corrective torques
for the robot actuators. The robot-control experiment results are
intended to assess the effects on performance caused by concrete
neural properties, cerebellar subcircuits, or adaptive mechanisms
(synaptic plasticity). This robot-control experimentation demands
human-like robots whose intrinsic dynamics is somewhat similar
to their biological counterparts. This requirement motivates the



1708 N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716
Fig. 3. (A) Benchmark trajectory to be performed consisting of sinusoidal components. The trajectory is shown in both joint coordinate and Cartesian coordinates (eight-like
trajectory). The receptive fields are distributed covering thewhole range determined by the joint coordinates. (B) Implemented cerebellar control loop. The cerebellum infers
a corrective model that produces effective corrective commands in order to compensate the existing mismatch between the crude inverse dynamic robot model and the
actual base dynamic plant model. The desired arm states are generated according to the Cartesian trajectory to be followed (positions (Qd), velocities (Q̇d) and accelerations
(Q̈d)) by the trajectory generator (a crude inverse kinematic model representing the output of the associative cortex and other motor areas). These desired arm states in joint
coordinates are used at each time step to compute desired torque commands (crude inverse dynamic robot model). They are also used as input to the cerebellum which
produces the predictive corrective commands (τcorrective) which are added to these crude torque commands (τdesired). The final total torque addition is supplied to the robot
plant. The difference between the actual robot trajectory and the desired one is used to calculate the climbing fiber activity which is supplied to the cerebellum as a teaching
input signal (for adapting PF–PC synaptic weights).
use of lightweight robots (LWR) such as the Kuka lightweight robot
developed by DLR [77,78].

As mentioned above, the main role of the cerebellum seems to
be related to humanmotor control, especially in those tasks where
timing and force are critical. Therefore, those manipulation tasks
able to modify the dynamics of the arm-plant whilst performing
certainmovementswould constitute the paradigm to follow. These
LWR robots are capable of being dynamically modified when ma-
nipulating different payload contexts under certain kind of move-
ments. This motivates the definition of a benchmark trajectory
capable of revealing the dynamic properties of a LWR. According to
the proposals in [76,79], fast movements in a smooth pursuit task
consisting of vertical and horizontal sinusoidal components are
good candidates in order to reveal the robot dynamics. Examples
of different benchmark trajectories can be checked in [74,76,80].
Considerations related to the communication interface delay and
the friction force of the robot joints need to be taken into account
(see Appendix).

2.6. The integrated neurobotics simulation platform

These techniques are now included into an integrated software
platform able to combine realistic robotic experiments (running
in real time) with cerebellar like modules that work as corrective
engines. This platform aims to facilitate the study of how the
adaptive neural information coding mechanisms underlying the
ability of humans to interact with their environment is handled
by means of an effective adaptation at the cerebellum. The
simulator of the robotic LWR arm, the control loop, and the
cerebellar module were implemented in C/C++ following previous



N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716 1709
developments [5–7,24,25]. The software platform source code has
been made available at: https://code.google.com/p/edlut/source/
browse/branches/EDLUT_with_Robot.

The core of the neural simulator was implemented taking ED-
LUT [4] source code as the basis. EDLUT was then provided with
an interface library as well as with a robot library able to dynami-
cally define and model different lightweight robot configurations.
In this work, we use a rough approximation of a Kuka LWR [77].

2.7. A practical running example

The aim of this working example is to show how a cerebel-
lar model based on [7] within a ‘‘perception–action’’ closed-loop
[5–7,74] is used in order to control a simulated LWR [77] arm by
means of the developed software platform. Vertical and horizon-
tal sinusoidal composed trajectory-following tasks [5–7,74] will
be run in order to reveal the robot dynamics (see Fig. 3) with dif-
ferent payloads to be manipulated. The input pathways to the ar-
tificial cerebellum will be MFs and CFs. The cerebellar output is
translated into torque commands for each joint through conver-
sion modules [5–7], following the approach described in the pre-
vious section.

3. Results

Using this cerebellar architecture, a 1000 trial execution (each
trial takes one second) following the principles already presented
in [7] has been performed, obtaining the raster plot shown in Fig. 4.
This figure represents a snapshot of one trial execution represent-
ing a cerebellar simulation of one second eight-like trajectory op-
erating 3 revolute joints (joint 1, joint 2, and joint 3 indicated in
Fig. 3) of a LWR defined in [5–7] when manipulating a 10 kg pay-
load. This snapshot corresponds to two particular moments during
the learning process; the initial learning stage (left column plots)
and the final learning stage (right column plots). Mind that, as can
be seen in Fig. 4, at the initial learning stage (0–1 s period), no
cerebellar action has been learned yet (Fig. 4(E)), whilst at the fi-
nal learning stage (999–1000 s period), the learning process is well
settled down (Fig. 4(F)) and corrective terms are delivered through
DCNs.

As we see, all plots represent activity along time using dots (in
plots A and B, each dot represents a spike) or short vertical mark-
ers when the number of neurons being monitored is lower (plots
C, D, E, and F). Fig. 4(A) represents a raster plot of the input activity
that is reaching the cerebellar architecture throughmossy fibers at
the initial learning stage. As explained before,mossy fibers are able
to elicit a set of spike trains related to the desired and actual posi-
tions and velocities (according to the scheme illustrated in Fig. 2)
presented by the robot arm along the eight-like trajectory move-
ment. Each joint position and velocity is translated into spikes by
using three groups (one for position and another one for velocity
for each joint) of 20 mossy fibers. Each of these groups is activated
by its corresponding set of receptive fields (Fig. 2) that are cover-
ing the operative range of the input variable. At this initial learning
stage, the actual trajectory is far from the desired one, thus posi-
tion/velocity values only activate part of the population of mossy
fibers (compared to the activation of themossy fibers encoding the
desired trajectory). However, as Fig. 4(B) shows, at the final learn-
ing stage, both actual position/velocity values can properly cover
the operative range of the input variables. It can be seen that at
this final learning stage, the activation of the mossy fibers related
to the desired trajectory is similar to the activation profile of the
mossy fiber group related to the actual trajectory (encoding actual
position and velocity along the movement execution).

The activity of mossy fibers reaches the granular cell layer.
The granular layer operates adopting the model functionality
described in [13–15] by Yamazaki and Tanaka, that is, it behaves
as a state generator. A state generator machine is capable of
representing each time step (in our simulations, this is 0.002 s)
as an unambiguous time stamp (with a unique spike pattern
representation), thus facilitating the learning process (see [7]).

As indicated in the description of the cerebellar architecture, the
Purkinje cell activity is divided into 6 well-defined sets of spike
trains representing the generated spiking activity related to the
output agonist/antagonist joint micro complexes for each robot
joint (joint 1, joint 2, and joint 3). Each pair of these 6 well-defined
sets is related to each agonist/antagonist corrective action for the
three joints. As aforementioned, the inferior olive activity (spik-
ing patterns Fig. 4(C), (D)) is in charge of encoding the error sig-
nal (Fig. 4(C), (D) colored lines) that has to be compensated by the
cerebellar corrective terms; here, we can see that there are also 6
well-defined areas related to micro-complexes encoding the posi-
tive/negative corrective actions for the three robot joints. Fig. 4(C),
(D) illustrates how the inferior olive spike distribution during the
trajectory execution remains proportional to the received error
signals which in turn, are related to the actual position/velocity
errors. In these figures, it is shown how just a positive corrective
action is demanded in joints 2 and 3 whilst both positive and neg-
ative actions are demanded in joint 1 along the whole eight-like
trajectory execution. The error directionality (either positive or
negative error) is also illustrated in Fig. 4(C) and (D). Obviously, at
the initial learning stage, the amplitude of the encoded error signal
to be translated into spikes is high as well as the number of spikes
elicited by the inferior olive since the learning process has barely
started (Fig. 4(C)). On the contrary, once the learning process iswell
settled down, the expected amplitude of the encoded error signal
to be translated into spikes and the numbers of elicited spikes by
the inferior olive decreased significantly at this final learning stage
(Fig. 4(D)). The Inferior Olive cell activity is constrained between 1
and 10 Hz, according to neurophysiological data [81].

Finally, DCN generated output activity is plotted in Fig. 4(E)
and (F). At the beginning of the learning stage, a negligible cere-
bellar output is provided (Fig. 4(E)) whilst at the final learning
stage (Fig. 4(F)), an appropriate cerebellar output corrective ac-
tion is generated. Error corrections are accomplished by changes
in the activity of PCs that, in turn, affect the activity of the DCN,
which eventually is translated into analog torque correction sig-
nals (also plotted in Fig. 4(E) and (F), with continuous lines) fol-
lowing principles already presented in the previous section. Each
group of 4 DCN cells encodes the positive or negative correc-
tive term which is eventually translated into a joint corrective
torque. The higher/lower the activity at each micro complex is,
the higher/lower its corresponding corrective torque is. In fact, the
final activity at the DCN (which represents the actual corrective
terms being produced) is the result of the subtraction of the PC
activity (since its connection to DCN is inhibitory) which is spe-
cific and learned (through supervised learning at the granular cell-
Purkinje cell synapses) from a general (nonspecific) activity term
(from mossy fibers) which is approximately constant. Mind that,
although the corrections of the DCN after learning may seem very
irregular with high frequency terms (continuous lines Fig. 4(E) and
(F)), the actual contributions are smoothed out by the motor sys-
tem (in this case, the actual motor gears).

3.1. Robotic input/output

As briefly described in this work, cerebellar neural models are
a current open issue whose operating basis is not yet well deter-
mined due to their working complexity principles. New tools for
massive simulations (with multiple parameters) and state mon-
itoring capabilities are necessary to identify how certain neu-
ral/subcircuit/neural layer features are related to the cerebellar

https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot


1710 N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716
Fig. 4. Cerebellar activity monitoring one second simulation snapshot at the beginning of the learning process (left plots) and at the end of the learning process (right
plots). Left Y axes are used for the neuron number in the network. The bottom legend indicates how these neurons are related to different joints and agonist or antagonist
micro-complexes by using different colors. Plots C–F include two overlapped representations, the spike patterns related to the left Y axis and a continuous line referred to
the right Y axis at each plot. (A) (B) Translation of the desired/actual joint positions/velocities into mossy fiber activity at the beginning of the learning process (A) and at the
final learning stage (B). (C) (D) Evolution of the climbing fiber activity during the learning process and its corresponding error current proportional to the actual position and
velocity error. (C) High error current translated into spikes at the initial learning stage. (D) Lower error current translated into spikes at the end of the learning process. (E) (F)
Cerebellar output during the learning process and the corresponding generated analog corrective action. (E) Cerebellar output at the beginning of the learning process. No
spikes are elicited at the DCNs, the corrective actions are zero. (F) Cerebellar output at the end of the learning process. The spike output activity is translated into corrective
actions for each robot joint. Each couple of micro-complexes is related to a certain robot joint (agonist and antagonist terms). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
functionality. Therefore, relating the cerebellar operation with the
system in which the cerebellum is embodied seems to be the
natural step forward. The presented integrated software platform
is able to establish this interconnection between these two ele-
ments as shown in Figs. 4 and 5. Monitored snapshots of the whole
cerebellar activity are related with their corresponding robot per-
formance curve (system behavior). These snapshots facilitate the
interpretation of the results giving a better insight about what is
going on during embodied experimentation (behavioral experi-
ments as themanipulation task illustrated in the previous section).



N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716 1711
Fig. 5. Robotic performance (system behavior) in a manipulation task. The
manipulation of a 10 kg payload whilst executing an eight-like trajectory reveals
the inner robot dynamics. The benchmark trajectory execution takes one second
in each trial. (A) Snapshot of the execution of the eight-like trajectory in joint
coordinates (position) belonging to the initial learning stage (top plots) and the
final learning stage (bottom plots). (B) Snapshot of the execution of the eight-like
velocity trajectory in joint coordinates (velocity) belonging to the initial learning
stage (top plots) and the final learning stage (bottom plots). (C) Averaged Mean
Absolute Error (during each trial) obtained along the learning process computing
the addition of the individualMAEs corresponding to each robot joint. Four different
simulations with different initial random values at PF–PC synaptic weights have
been used. The shadowed area is defined between the maximum and minimum
values among the four simulations in each trial. The red curve is the average of the
four simulations. (D) Cartesian coordinate evolution during the learning process.
At the initial learning stage, the LWR is not capable of properly handling the
attached payload. At the final learning stage, the cerebellum is able to provide the
appropriate corrective torque values achieving almost the aimed target trajectory.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5 is an illustrative example of the sort of performance curves
that can be obtained by using the presented software platform.
Here, the robot arm is manipulating a 10 kg payload whilst exe-
cuting a one second eight-like trajectory able to reveal the inner
robot dynamics. Fig. 5(A) and (B), represent a snapshot of this one
second eight-like trajectory execution in joint coordinates belong-
ing to the initial learning stage (first row plots) and the final learn-
ing stage (position and velocity) (second row plots). The target
trajectory at each joint is plotted in blue (continuous line) whilst
the actual trajectory at each joint is plotted in red (dashed line).
The error directionality (position and velocity error) is shown in
these plots (either positive or negative error). As mentioned be-
fore, during the manipulation of objects with a significant weight,
the arm–object platform dynamics differ from the original arm dy-
namics. This translates into a continuous negative error at the 2nd
and 3rd joints which activates just one of the two inferior olivemi-
cro complexes (related to each joint) during the simulation. Addi-
tionally, Fig. 5(C) shows the Mean Absolute Error (MAE) obtained
along the learning process. Finally, plot 5(D) represents just an ex-
ample of how the obtained Cartesian coordinates of the tip of the
robot arm evolve during the learning process. As shown, at the ini-
tial learning stage, the LWR is not capable of properly handling the
attached payload; there is no acquired cerebellar corrective model
for the 10 kg payload. Therefore, no corrective torque values are
supplied yet. At the final learning stage, the cerebellum is able to
provide the appropriate corrective torque terms achieving almost
the aimed target trajectory.

Fig. 6 shows the same kind of experimentation conducted
in Fig. 5 but extrapolated to different masses so as to reveal
the capabilities and features that the learning at PF–PC synapses
endows. Fig. 6(A) and (B), represent the MAE evolution whilst the
robot arm is manipulating different payloads (10, 6 and 2.5 kg
respectively) whether independently or consecutively. In Fig. 6(A)
the learning process is reset, which means that all the synaptic
weights at PF–PC are randomly chosen at the end of the learning
of each payload whilst in Fig. 6(B) the learning process is not
reset at the end of each payload learning. As can be seen, the
learning is not destructive; the incoming learning process takes
advantage of the previous learning process as indicated by the
lower initial starting MAE error after switching between contexts.
Fig. 6(C) points out the normalized performance that each of
the aforementioned experiments achieves. Fig. 6(D) demonstrates
how the learning process is compatible with incremental learning.
Here, the payloads are switched every 50 trials (between10 kg/6 kg
in the left plot and 6 kg/2.5 kg in the right plot) thus showing how
the learning process can simultaneously abstract two different
payloads (two different dynamic models) that are only marginally
interfering with each other.

3.2. Real time simulation

The computation load when simulating spiking neurons is high
and needs to be done efficiently for controlling robots in real time.
When any event-driven simulator is confronted with a massive
amount of data to be processed online, this approach suffers due
to the discontinuous flow of data to be computed. In fact, the
learning process must be done online, in real time, as the robot
is moving. A mechanism to ensure real time when processing all
the neural activity involved during the simulation process has been
implemented. During a neural simulation, all neural updates have
to be processed in chronological order. However, during the neural
simulation, future eventsmay appear (i.e. events that occurred due
to delayed spike firings or neural connections presenting delays).
To manage this situation, a heap data structure able to efficiently
insert and extract ordered events is required. Controlling the CPU
time consumption of each time step allows real-time simulation.
Although the calculation of the dynamics and kinematics of the
robot (for instance, using a Newton Euler algorithm [74]) involves



1712 N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716
Fig. 6. Independent Learning vs. Incremental Learning. (A) Manipulation of 10, 6, and 2.5 kg independently. The learning process is reset (synaptic weights at PF–PC are
randomly chosen at the end of the learning process of each payload). (B)Manipulation of 10, 6, and 2.5 kg consecutively. The learning process is not reset at the end of the each
payload learning. The learning is not destructive; the incoming learning process takes advantage of the previous learning process as indicated by the lower initial startingMAE
error after switching between contexts (objects under manipulation). The zoom in the graph shows how the system behaves when these new objects are presented again
(300 iterations each). This demonstrates that the learning is done with only low interference between the object model dynamics being learned (abstracted). (C) Normalized
initial error values (obtained in the ten-first trial errors per payload, 10 kg initial error has been taken as theworse possible scenario) obtained at the beginning of the learning
process with independent learning (left plots) and consecutive or incremental learning (right plots). The normalized average and standard deviation of MAE values (of the
last 100 trials of each learning process) with independent learning (left plot) and consecutive or incremental learning (right plot) are also shown. In any case, incremental
learning outperforms independent learning. (D) Incremental learning. Switching payloads every 50 trials (between 10 kg/6 kg in the left plot and 6 kg/2.5 kg in the right
plot). It is shown how the learning can simultaneously abstract two different payloads (two different dynamic models) only marginally interfering with each other.



N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716 1713
Fig. 7. Real timemonitoring. The total computation time has to remain below2ms,
because the communication between the neural simulator and the robot platform
(real or simulated) is sliced in intervals of 2 ms.

a constant number of operations at each time step, the neural-
simulation computational cost depends on the neural activity.

We have implemented a watchdog timer supervising each
simulation time step. When the simulation process is consuming
more time than a certain predefined constraint percentage of the
total robot communication step time, the simulator skips non-
critical event processing, thus keeping the simulation running in
time (see Fig. 7). In our example, the total computation time has
to remain below 2 ms, since the communication between the
neural simulator and the robot platform is sliced in 2 ms intervals.
As shown in Fig. 7(A), the computation time of each simulation
slice (of 2 ms) consumes less than 2 ms. The ‘‘computation time’’
includes the cerebellar simulation time, the robotic simulation
time, and the communication time between them. At each
simulation step, the cerebellum updates and computes its internal
neural states thus eliciting a set of generated spikes. There exists
a close relationship between the number of generated spikes and
the consumed computational time (Fig. 7(A) and (B)). In the end,
a trade-off decision has to be taken. A watchdog ensures that the
boundary will not be surpassed.

This illustrative simulation is composed by 1871 neurons and
69603 synapses. We have used simple point neurons (parame-
terized according to different cerebellar neuron types) with three
state variables (membrane potential and the excitatory and in-
hibitory conductances). Thus, 5613 state variables need to be con-
tinuously updated. During one second of simulation, the network
produces 9890 spikes and 69603 synaptic weight modifications
(through spike time dependent plasticity at the parallel fiber to
Purkinje cell synapses). All this needs to be computed within the
real-time constraint. The simulationwas run on a CPU consisting of
a Pentium i7 3770k 3.4 GHz processor with 8 GB RAM all mounted
on an ASUS P8Zseries motherboard.

4. Discussion

Along this paper, we have outlined how the EDLUT neural simu-
lator has been equippedwith an integrated robotic software frame-
work. The dialog between these two elements, the EDLUT and the
robotic software, is mediated by an efficient bidirectional interface
(analog signals to spike patterns and vice versa) able to process
sensory data from the robot agent and generate the appropri-
ate robot motor commands. As a running embodied nervous-
system example, we have implemented and described a cerebellar
architecture within a robotic control closed-loop where the robot
features allow the exploitation of the cerebellar potential in a
manipulating control task. This manipulation task aims to follow
a specific desired trajectory consisting of sinusoidal components
with the robotic arm manipulating a punctual mass. This punc-
tual mass (representing the object under manipulation) affects the
global dynamic model of the arm + object plant. The cerebellar
system aims to provide corrective torque terms to compensate the
existing mismatch between the arm dynamic model and the one
of the arm + object under manipulation. These corrective torque
terms are refined as the cerebellum acquires the dynamic model
of the object under manipulation. This can be considered an ab-
straction process based on just the synaptic plasticity mechanism
between the parallel fibers and the Purkinje cells.

The interest of this integrated neurobotics software platform
can be outlined in two main points: for accelerating the devel-
opment of biologically plausible control architectures cooperat-
ing with robot agents and for studying how certain capabilities
of the cerebellum in coordinated motion and object manipulation
are based on cellular characteristics, nervous system topology, or
local synaptic adaptationmechanisms. In fact, a rich dynamical en-
vironment (i.e. highly reconfigurable robot model dynamics and
reconfigurable cerebellar control loops) is a powerful tool to ex-
plore neurophysiological hypotheses from a functional point of
view. All this also needs to be complemented with an appropri-
ate monitoring and evaluation methodology. Here, it has been ad-
dressed not only just the way in which the neural activity can be
plotted and interpreted by considering the micro-complex biolog-
ically plausible cerebellar organization, but also the neural activ-
ity contributions to agonist and antagonist motor system outputs
thanks to the continuous monitoring of the target and actual joint
trajectories.

Furthermore, the performance obtained is also remarkable. Al-
though a simulation achieving real-time could be considered to be
irrelevant, it is a critical non-trivial issue in embodied system neu-
roscience. When doing experiments with a real neuro-operated
body, real-time operation becomes a major requirement. We
have shown how this integrated software framework fulfils real-
time requirement enabling a future real-robot cerebellar spiking
control. In fact, the software framework integrating the neural sim-
ulator, the robotic simulator and all the communication andmoni-
toring components has been developed with demanding real-time
constraints.

5. Conclusions

In this paper, we show how a cerebellar structure integrated
in the control loop as an adaptive feedforward model can learn
to abstract model dynamics of objects being manipulated. We use
an integrated simulation platform consisting of a real-time spiking
neural simulator (EDLUT) and a simulated robot (LWR). This
platform allows us to monitor the cell activity at different layers
in terms of spike patterns as well as the contribution that they
produce in terms of actual corrective torques within the control
loop before learning the object model, and also eventually in the
corrected trajectory (closer to the goal trajectory) after the learning
process converges. The possibility of monitoring each cell activity
allows us to interpret how the whole network works, receiving
distributed spike patterns from themossy fibers, producing sparse
coding at the granular layer and adapting the weights between the
granular layer and the Purkinje cells through supervised learning
driven by the inferior olive activity (which is related to the actual
error at each instant of the trajectory execution). The cerebellum
integrated in the control loop with the presented configuration
(actual and desired positions/velocities reaching the cerebellum
through mossy fibers), performs the model abstraction process,



1714 N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716
as a function approximation problem (with the object under
manipulation on-the-loop).

In the final experiments done (Fig. 6(A), (B) and (C)), we demon-
strate that the presented architecture can learn dynamic mod-
els incrementally (with low interference with each other). In fact,
learning a newmodel takes advantage of previous learnedweights
(related to previous objects under manipulation) but without de-
stroying these previous models (Fig. 6(D)).

Acknowledgments

This work was supported by the EU grants REALNET FP7-
ICT270434 (where the cerebellar simulations were developed)
and HBP FP7 Flagship Project 604102 (monitoring tools are being
developed), and by the national grants ARC-VISION (TEC2010-
15396) and PYR (2014-16).

Appendix A. Considerations related to benchmark trajectory
accuracy; communication interface delay

When a real robot is connected to the controller (cerebellar
base controller), its communication interface introduces a delay
each time that the joint positions are obtained and the joint mo-
tor torques are set. This delay limits the frequency in which the
controller can interact with the robot. Thus, the robot commu-
nication interface determines the minimum control cycle time.
The robot trajectory accuracy decreases as the control cycle time
increases, since, for example, the robot motor torque set points
remain constant during each cycle. Therefore, the suitability of a
concrete communication interface (bus) depends on the trajectory
accuracy decline which is acceptable. It is of importance then to
take this limitation into account when developing realistic real-
time software towards embodied system neuroscience. Spiking
cerebellar updating usually demands simulation step times in the
millisecond scale (1–2 ms) [5–7] making this bus delay considera-
tion an important factor to be considered when designing cerebel-
lar control stages.

Just as an example, Fig. A.1 illustrates the inaccuracy intro-
duced by different bus transmission delays for different conducted
experiments using a simulated lightweight robot [77] and an eight-
shaped test trajectory. In order to simulate the effect of a commu-
nication bus, the torque generated by the controller is repeatedly
kept constant for a period (control cycle time). When the robot in-
put torque is increasing, the bus delay produces an average torque
below the desired one (with negligible bus delay). The opposite oc-
curswhen the input torque is decreasing. Therefore, the joint angle
error caused by the transmission time is related to the desired an-
gle value and velocity during the trajectory execution.

Appendix B. Considerations related to the friction force of the
robot joints

There are several forces that affect the expected robot dynamic
model. When these forces are not properly taken into account, an
open-loop controller for an ideal robotmay fail to produce accurate
movements. Themost relevant perturbing forces that can be easily
found in simple robotic arms can be summarized as follows:

Force exerted by the wires attached to the robot motors (for
supping current and measuring angle encoder inputs/outputs): These
forces remain relatively low. They can pull or push the robot’s
joints when the arm is in certain positions, facilitating or hindering
the movement in certain directions. Since these forces are usually
very low, it can be assumed that they will be compensated thanks
to the adaptability of the cerebellar controller.

Inner dry friction forces of the robot joints: The two regimes of
dry friction are static friction (the joint remains static) and kinetic
Fig. A.1. Possible consequences of the interface delay: snapshot of the cerebellar
torque supplied to a LWR robot [77] (after being kept constant for several
milliseconds as indicated in different traces).

friction (between moving surfaces of the joint). Sometimes the
static friction of some robots is very significant. This friction force
can be also compensated by the cerebellar controller. Nevertheless,
when the magnitude of this force is comparable or higher than
the rest of the force that the cerebellar controller must exert (to
compensate for other deviations from the ideal dynamic model),
the precision of the adaptive cerebellar module to compensate
these other deviations is low. This occurs because if the cerebellar
output force range increases, the resolution of its output per
force unit decreases. This output range increase is equivalent to
multiplying the output by a factor; therefore, the inaccuracy of this
output would also be multiplied.

Accurately compensating the effect of the friction forces can
sometimes become considerably complex, depending on the used
compensation technique (this force is not the same in all the possi-
ble joint angles); in fact, the friction termproves to be crucial when
controlling light-weight robot arms with high-ratio gear boxes be-
cause there are no standard methodologies/techniques to control
these robots without massive modeling [76]. However a complex
technique to fully compensate this force is not needed since the
cerebellar module can conveniently compensate it (when it is rel-
atively low). Thus, in this case, the goal of the compensation tech-
nique should not be to fully compensate for these perturbations,
but to keep them in a range domain where the cerebellar module
can learn to accurately correct the movement deviations.

References

[1] J.S. Albus, A theory of cerebellar function, Math. Biosci. 10 (1971) 25–61.
[2] D. Marr, A theory of cerebellar cortex, J. Physiol. 202 (1969) 437–470.
[3] S.F. Giszter, K.A. Moxon, I.A. Rybak, J.K. Chapin, Neurobiological and

neurorobotic approaches to control architectures for a humanoid motor
system, Robot. Auton. Syst. 37 (2001) 219–235.

[4] E. Ros, R. Carrillo, E.M. Ortigosa, B. Barbour, R. Agís, Event-driven simulation
scheme for spiking neural networks using lookup tables to characterize
neuronal dynamics, Neural Comput. 18 (2006) 2959–2993.

[5] N.R. Luque, J.A. Garrido, R.R. Carrillo, S. Tolu, E. Ros, Adaptive cerebellar spiking
model embedded in the control loop: context switching and robustness
against noise, Int. J. Neural Syst. 21 (2011) 385–401.

[6] N.R. Luque, J.A. Garrido, R.R. Carrillo, O.J.M.D. Coenen, E. Ros, Cerebellarlike
corrective model inference engine for manipulation tasks, IEEE Trans. Syst.
Man Cybern. B 41 (2011) 1299–1312.

[7] N.R. Luque, J.A. Garrido, R.R. Carrillo, O.J.M.D. Coenen, E. Ros, Cerebellar input
configuration toward object model abstraction in manipulation tasks, IEEE
Trans. Neural Netw. 22 (2011) 1321–1328.

[8] J.S. Albus, Data storage in the cerebellar model articulation controller (CMAC),
Trans. ASME, J. Dyn. Syst. Meas. Control 3 (1975) 228–233.

[9] C. Sabourin, O. Bruneau, Robustness of the dynamic walk of a biped robot
subjected to disturbing external forces by using CMACneural networks, Robot.
Auton. Syst. 51 (2005) 81–99.

http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref1
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref2
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref3
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref4
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref5
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref6
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref7
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref8
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref9


N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716 1715
[10] C.K. Tham, Reinforcement learning ofmultiple tasks using a hierarchical CMAC
architecture, Robot. Auton. Syst. 15 (1995) 247–274.

[11] T. Yamazaki, S. Nagao, A computationalmechanism for unified gain and timing
control in the cerebellum, PLoS One 3 (2012) e33319.

[12] T. Yamazaki, S. Tanaka, Neural modeling of an internal clock, Neural Comput.
17 (2005) 1032–1058.

[13] T. Yamazaki, S. Tanaka, The cerebellum as a liquid statemachine, Neural Netw.
20 (2007) 290–297.

[14] T. Yamazaki, S. Tanaka, Computational models of timing mechanisms in the
cerebellar granular layer, Cerebellum 8 (2009) 423–432.

[15] T. Yamazaki, S. Tanaka, A spiking network model for passage-of-time
representation in the cerebellum, Eur. J. Neurosci. 26 (2007) 2279–2292.

[16] P. Manoonpong, T. Geng, T. Kulvicius, B. Porr, F. Wörgötter, Adaptive, fast
walking in a biped robot under neuronal control and learning, PLoS Comput.
Biol. 3 (2007) e134.

[17] W.Wolpert, M. Kawato,Multiple paired forward and inversemodels formotor
control, Neural Netw. 11 (1998) 1317–1329.

[18] P. Dean, J. Porril, Adaptive filter models of the cerebellum. computational
analysis, Cerebellum 7 (2008) 567–571.

[19] P. Dean, J. Porrill, The cerebellum as an adaptive filter: a general model? Funct.
Neurol. 25 (2010) 173–180.

[20] P. Dean, J. Porrill, C.F. Ekerot, H. Jörntel, The cerebellar microcircuit as an
adaptive filter: experimental and computational evidence, Nat. Rev. Neurosci.
11 (2010) 30–34.

[21] M. Fujita, Adaptive filter model of the cerebellum, Biol. Cybernet. 45 (1982)
195–206.

[22] J. Porrill, P. Dean, Cerebellar motor learning: when is cortical plasticity not
enough? PLoS Comput. Biol. 3 (2007) e197.

[23] J.C. Houk, J.T. Buckingham, A.G. Barto, Models of cerebellum and motor
learning, Behav. Brain Sci. 19 (1996) 369–383.

[24] S. Tolu, M. Vanegas, N.R. Luque, J.A. Garrido, E. Ros, Bio-inspired adaptive
feedback error learning architecture for motor control, Biol. Cybernet. 106
(2012) 507–522.

[25] S. Tolu, M. Vanegas, J.A. Garrido, N.R. Luque, E. Ros, Adaptive and predictive
control of a simulated robot arm, Int. J. Neural Syst. 23 (2013).

[26] N. Schweighofer, J. Spoelstra, M.A. Arbib, M. Kawato, Role of the cerebellum
in reaching movements in human. II. A neural model of the intermediate
cerebellum, Eur. J. Neurosci. 10 (1998) 95–105.

[27] N. Schweighofer, M.A. Arbib, M. Kawato, Role of the cerebellum in reaching
movements in human. I. Distributed Inverse dynamics control, Eur. J. Neurosci.
10 (1998) 86–94.

[28] J.C. Eccles, Circuits in the cerebellar control of movement, Proc. Natl. Acad. Sci.
58 (1967) 336–343.

[29] M. Ito, Adaptive modification of the vestibulo-ocular reflex in rabbits affected
by visual inputs and its possible neuronal mechanisms, in: R. Granit,
O. Pompeiano (Eds.), Progress in Brain Research, Elsevier, 1979, pp. 757–761.

[30] M. Ito, The Cerebellum and Neural Control, Raven Press, New York, 1984.
[31] M. Ito, Synaptic plasticity in the cerebellar cortex and its role inmotor learning,

Can. J. Neurol. Sci.. Le J. Can. Sci. Neurol. 20 (Suppl 3) (1993) S70–S74.
[32] M. Ito, Control of mental activities by internal models in the cerebellum, Nat.

Rev. Neurosci. 9 (2008) 304–313.
[33] E. D’Angelo, C.I. De Zeeuw, Timing and plasticity in the cerebellum: focus on

the granular layer, Trends Neurosci. 32 (2009) 10.
[34] Z. Gao, B.J. vanBeugen, C.I. De Zeeuw, Distributed synergistic plasticity and

cerebellar learning, Nat. Rev. Neurosci. 13 (2012) 1–17.
[35] C. Hansel, D.J. Linden, E. D’Angelo, Beyond parallel fiber LTD: the diversity of

synaptic and non-synaptic plasticity in the cerebellum, Nat. Neurosci. 4 (2001)
467–475.

[36] G.A. Jacobson, D. Rokni, Y. Yarom, A model of the olivo-cerebellar system as a
temporal pattern generator, Trends Neurosci. 31 (2008) 617–625.

[37] G.A. Jacobson, I. Lev, Y. Yarom, D. Cohen, Invariant phase structure of olivo-
cerebellar oscillations and its putative role in temporal pattern generation,
Proc. Natl. Acad. Sci. 106 (2009) 3579–3584.

[38] R.R. Carrillo, E. Ros, S. Tolu, T. Nieus, E. D’Angelo, Event-driven simulation of
cerebellar granule cells, Biosystems 94 (2008) 10–17.

[39] S. Solinas, T. Nieus, E. D’Angelo, A realistic large-scale model of the cerebellum
granular layer predicts circuit spatio temporal filtering properties, Front. Cell.
Neurosci. 4 (2010).

[40] P. Gleeson, V. Steuber, R.A. Silver, S. Crook, NeuroML, in: Computational
Systems Neurobiology, Springer, 2012, pp. 489–517.

[41] M.L. Hines, T. Morse, M. Migliore, N.T. Carnevale, G.M. Shepherd, ModelDB:
a database to support computational neuroscience, J. Comput. Neurosci. 17
(2004) 7–11.

[42] N.C. Rowland, D. Jaeger, Coding of tactile response properties in the rat deep
cerebellar nuclei, J. Neurophysiol. 94 (2005) 1236–1251.

[43] N.C. Rowland, D. Jaeger, Responses to tactile stimulation in deep cerebellar
nucleus neurons result from recurrent activation in multiple pathways,
J. Neurophysiol. 99 (2008) 704–717.

[44] T.M. Teune, J. van der Burg, C.I. de Zeeuw, J. Voogd, T.J. Ruigrok, Single Purkinje
cell can innervate multiple classes of projection neurons in the cerebellar
nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in
the rat, J. Comp. Neurol. 392 (1998) 164–178.
[45] W. Zhang, W.D. Linden, Long-term depression at the mossy fiber-deep
cerebellar nucleus synapse, J. Neurosci. 26 (2006) 6935–6944.

[46] A. Delorme, J. Gautrais, R. van Rullen, S. Thorpe, SpikeNET: a simulator for
modeling large networks of integrate and fire neurons, Neurocomputing 26
(1999) 989–996.

[47] L. Watts, Event-driven simulation of networks of spiking neurons, Adv. Neural
Inf. Process. Syst. (1994) 927–934.

[48] M. D’Haene, B. Schrauwen, J. Van Campenhout, D. Stroobandt, Accelerating
event-driven simulation of spiking neurons with multiple synaptic time
constants, Neural Comput. 21 (2009) 1068–1099.

[49] T. Makino, A discrete-event neural network simulator for general neuron
models, Neural Comput. Appl. 11 (2003) 210–223.

[50] W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Popula-
tions, Plasticity, Cambridge University Press, 2002.

[51] J.A. Garrido, in: Edlut official website, 2012.
[52] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower,

M. Diesmann, A. Morrison, P.H. Goodman, Simulation of networks of spiking
neurons: a review of tools and strategies, J. Comput. Neurosci. 23 (2007)
349–398.

[53] J. Reutimann,M. Giugliano, S. Fusi, Event-driven simulation of spiking neurons
with stochastic dynamics, Neural Comput. 15 (2003) 811–830.

[54] J.A. Garrido, R.R. Carrillo, N.R. Luque, E. Ros, Event and time driven hybrid
simulation of spiking neural networks, in: Advances in Computational
Intelligence, Springer, 2011, pp. 554–561.

[55] A. Pouget, P. Dayan, R. Zemel, Information processing with population codes,
Nat. Rev. Neurosci. 1 (2000) 125–132.

[56] S.Wu, S. Amari, H. Nakahara, Population coding and decoding in a neural field:
a computational study, Neural Comput. 14 (2002) 999–1026.

[57] T. Flash, T.J. Sejnowski, Computational approaches to motor control, Curr.
Opin. Neurobiol. 11 (2001) 655–662.

[58] B. Amirikian, A.P. Georgopoulos, Modular organization of directionally tuned
cells in the motor cortex: is there a short-range order? Proc. Natl. Acad. Sci.
100 (2003) 12474–12479.

[59] K.R. Boff, J.E. Lincoln, Engineering Data Compendium. Human Perception and
Performance. Vol. 3, Harry G Armstrong. Aerospace Medical Research Lab
Wright-Patterson Afb Oh, 1988.

[60] N.V. Swindale, Orientation tuning curves: empirical description and estima-
tion of parameters, Biol. Cybernet. 78 (1998) 45–56.

[61] N.R. Luque, J.A. Garrido, J. Ralli, J.J. Laredo, E. Ros, From sensors to spikes:
evolving receptive fields to enhance sensorimotor information in a robot-arm,
Int. J. Neural Syst. 22 (2012) 1250013.

[62] J.D. Victor, Spike train metrics, Curr. Opin. Neurobiol. 15 (2005) 585–592.
[63] M.C. van Rossum, A novel spike distance, Neural Comput. 13 (2001) 751–763.
[64] B. Schrauwen, J. VanCampenhout, BSA, a fast and accurate spike train encoding

scheme, in: Proceedings of the International Joint Conference on Neural
Networks, 2003, IEEE, 2003, pp. 2825–2830.

[65] G.C. Goodwin, Adaptive Prediction and Control, Prentice Hall, NJ, 1984.
[66] R.C. Miall, D.J. Weir, D.M. Wolpert, J.F. Stein, Is the cerebellum a Smith

predictor? J. Mot. Behav. 25 (1993) 203–216.
[67] D.M. Wolpert, R.C. Miall, Forward models for physiological motor control,

Neural Netw. 9 (1996) 1265–1279.
[68] A.J. Bastian, Learning to predict the future: the cerebellum adapts feedforward

movement control, Curr. Opin. Neurobiol. 16 (2006) 645–649.
[69] E.J. Hwang, R. Shadmehr, Internal models of limb dynamic and the encoding

of limb state, J. Neural Eng. 2 (2005) 266–278.
[70] E. Nakano, H. Imamizu, R. Osu, Y. Uno, H. Gomi, T. Yoshioka, M. Kawato,

Quantitative examinations of internal representations for arm trajectory
planning. Minimum commanded torque change model, J. Neurophysiol. 81
(1999) 2140–2155.

[71] E. Todorov, Optimality principles in sensorimotor control (review), Nat.
Neurosci. 7 (2004) 907–915.

[72] E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, McGraw-
Hill Professional Publishing, New York, 2000.

[73] M. Kawato, K. Furukawa, R. Suzuki, A hierarchical neural-network model
for control and learning of voluntary movement, Biol. Cybernet. 57 (1987)
169–185.

[74] J.A. Garrido, N.R. Luque, E. D’Angelo, E. Ros, Distributed cerebellar plasticity
implements adaptable gain control in a manipulation task: a closed-loop
robotic simulation, Front. Neural Circuits 7 (2013).

[75] B. Siciliano, O. Khatib, Springer Handbook of Robotics, Springer, 2008.
[76] P. van der Smagt, Benchmarking cerebellar control, Robot. Auton. Syst. 32

(2000) 237–251.
[77] A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, G. Hirzinger,

The DLR lightweight robot: design and control concepts for robots in human
environments, Int. J. Ind. Robot 34 (2007) 376–385.

[78] G. Hirzinger, J. Butterfab, M. Fischer, M. Grebenstein, M. Hähnle, H. Liu, N.
Shäfer, I. Sporer, A mechatronics approach to the design of light-weight arms
and multifingered hands, in: ICRA, 2000, pp. 46–54.

[79] R.E. Kettner, S. Mahamud, H. Leung, N. Sittko, J.C. Houk, B.W. Peterson, A.G.
Barto, Prediction of complex two-dimensional trajectories by a cerebellar
model of smooth pursuit eye movement, J. Neurophysiol. 77 (1997)
2115–2130.

http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref10
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref11
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref12
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref13
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref14
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref15
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref16
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref17
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref18
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref19
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref20
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref21
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref22
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref23
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref24
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref25
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref26
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref27
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref28
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref29
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref30
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref31
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref32
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref33
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref34
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref35
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref36
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref37
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref38
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref39
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref40
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref41
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref42
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref43
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref44
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref45
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref46
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref47
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref48
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref49
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref50
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref52
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref53
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref54
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref55
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref56
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref57
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref58
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref59
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref60
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref61
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref62
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref63
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref64
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref65
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref66
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref67
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref68
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref69
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref70
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref71
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref72
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref73
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref74
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref75
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref76
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref77
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref79


1716 N.R. Luque et al. / Robotics and Autonomous Systems 62 (2014) 1702–1716
[80] H. Hoffmann, G. Petkos, S. Bitzer, S. Vijayakumar, Sensor-assisted adaptive
motor control under continuously varying context, 2007.

[81] N. Schweighofer, K. Doya, M. Kawato, Electrophysiological properties of
inferior olive neurons: a compartmental model, J. Neurophysiol. 82 (1999)
804–817.

Niceto Rafael Luque received his M.S. and Ph.D. in
Computer science and Networks from the University of
Granada (Spain) in 2007 and 2013 respectively. He also
received a B.S in Electronics Engineering and an M.S. in
Automatics and Industrial Electronics from the University
of Córdoba (Spain) in 2003 and 2006, respectively. He
is currently participating as a postdoctoral researcher in
an EU project related to adaptive learning mechanisms
and bio-inspired control (REALNET). His main research
interests include biologically processing control schemes,
light weight robot, and spiking neural networks.

Richard Rafael Carrillo received a Ph.D. degree in Com-
puter and Electronics Engineering from the University of
Cagliari (Italy) in 2008 and in Computer Science from the
University of Granada (Spain) in 2009. He is currently par-
ticipating as a postdoctoral researcher in an EU project re-
lated to the implementation of realistic neural networks.
He is interested in the efficient simulation of spiking neu-
ral networks and modeling of neurons and functional ner-
vous circuits.
Francisco Naveros received an M.S. in Telecom Engineer-
ing and an M.S. in Computer science and Networks from
the University of Granada (Spain) in 2011 and 2012 re-
spectively. He is currently a Ph.D. student at the Univer-
sity of Granada. His main research interest includes high
performance simulation of spiking neural networks using
GPUs.

Jesús Alberto Garrido received his M.S. degree in Com-
puter Science and his Ph.D. degree in Computer Architec-
tures andNetworks from theUniversity of Granada (Spain)
in 2007 and 2011 respectively. He is currently working as
a postdoctoral researcher at the Department of Brain and
Behavioral Sciences at the University of Pavia (Italy). He is
participating in an EU project related to adaptive learning
mechanisms and bio-inspired control (REALNET). Hismain
research interests include biologically processing control
schemes, learning models, and spiking neurons.

María José Sáez-Lara received the Ph.D. degree from the
University of Granada (Spain) in 2003, where she is cur-
rently an Associative Professor at the Biochemistry and
Molecular Biology Department. Her research interests in-
clude Computational Biology,Molecular Biology processes
and Genetics.

http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref81

	Integrated neural and robotic simulations. Simulation of cerebellar neurobiological substrate for an object-oriented dynamic model abstraction process
	Introduction
	Functional cerebellar models; a brief overview
	How to embody the cerebellar circuitry
	Modeling the cerebellar circuits

	Material and methods
	The real-time neural simulator. EDLUT
	The cerebellar model
	Neural population coding
	From sensors to spikes
	From spikes to actuators, decoding the cerebellar output
	Equivalent to an integrative neuron

	Cerebellar control loop; a plausible implementation
	Simulated robot integration: robot and training trajectory
	The integrated neurobotics simulation platform
	A practical running example

	Results
	Robotic input/output
	Real time simulation

	Discussion
	Conclusions
	Acknowledgments
	Considerations related to benchmark trajectory accuracy; communication interface delay
	Considerations related to the friction force of the robot joints
	References


