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Abstract

Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it remains

unclear how oculomotor adaptation depends on the interplay between the characteristic

Purkinje cell response patterns, namely tonic, bursting, and spike pauses. Here, a spiking

cerebellar model assesses the role of Purkinje cell firing patterns in vestibular ocular reflex

(VOR) adaptation. The model captures the cerebellar microcircuit properties and it incorpo-

rates spike-based synaptic plasticity at multiple cerebellar sites. A detailed Purkinje cell

model reproduces the three spike-firing patterns that are shown to regulate the cerebellar

output. Our results suggest that pauses following Purkinje complex spikes (bursts) encode

transient disinhibition of target medial vestibular nuclei, critically gating the vestibular signals

conveyed by mossy fibres. This gating mechanism accounts for early and coarse VOR

acquisition, prior to the late reflex consolidation. In addition, properly timed and sized Pur-

kinje cell bursts allow the ratio between long-term depression and potentiation (LTD/LTP) to

be finely shaped at mossy fibre-medial vestibular nuclei synapses, which optimises VOR

consolidation. Tonic Purkinje cell firing maintains the consolidated VOR through time.

Importantly, pauses are crucial to facilitate VOR phase-reversal learning, by reshaping pre-

viously learnt synaptic weight distributions. Altogether, these results predict that Purkinje

spike burst-pause dynamics are instrumental to VOR learning and reversal adaptation.

Author summary

Cerebellar Purkinje cells regulate accurate eye movement coordination. However, it

remains unclear how cerebellar-dependent oculomotor adaptation depends on the inter-

play between Purkinje cell characteristic response patterns: tonic, high frequency bursting,

and post-complex spike pauses. We explore the role of Purkinje spike burst-pause dynam-

ics in VOR adaptation. A biophysical model of Purkinje cell is at the core of a spiking net-

work model, which captures the cerebellar microcircuit properties and incorporates

spike-based synaptic plasticity mechanisms at different cerebellar sites. We show that Pur-

kinje spike burst-pause dynamics are critical for (1) gating the vestibular-motor response

association during VOR acquisition; (2) mediating the LTD/LTP balance for VOR
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consolidation; (3) reshaping synaptic efficacy distributions for VOR phase-reversal adap-

tation; (4) explaining the reversal VOR gain discontinuities during sleeping.

Introduction

The cerebellum controls fine motor coordination including online adjustments of eye move-

ments [1]. Within the cerebellar cortex, the inhibitory projections of Purkinje cells to medial

vestibular nuclei (MVN) mediate the acquisition of accurate oculomotor control [2, 3]. Here,

we consider the role of cerebellar Purkinje cells in the adaptation of the vestibular ocular reflex

(VOR), which generates rapid contralateral eye movements that maintain images in the fovea

during head rotations (Fig 1A). The VOR is crucial to preserve clear vision (e.g., whilst read-

ing) and maintain balance by stabilising gaze during head movements. The VOR is mediated

by the three-neuron reflex arc comprised of connections from the vestibular organ via the

medial vestibular nuclei (MVN) to the eye motor neurons[3–5]. VOR control is purely feed-

forward [6] and it relies on several cerebellar-dependent adaptive mechanisms driven by sen-

sory errors (Fig 1C). Because of its dependence upon cerebellar adaptation, VOR has become

one of the most intensively used paradigms to assess cerebellar learning [6]. However, very few

studies have focused on the relation between the characteristics spike response patterns of Pur-

kinje cells and VOR adaptation, which is the main focus of this study.

Purkinje cells provide the major output of the cerebellum through MVN. Purkinje cells

receive two main excitatory (glutamatergic) afferent currents (Fig 1B). The first excitatory input

originates from the parallel fibres (PFs), i.e. the axons of the granule cells (GCs). The second

comes from the climbing fibres (CFs), i.e. the projections of the inferior olive (IO) cells. These

excitatory inputs drive Purkinje cell simple or complex spike patterns, respectively [9, 10]. Sim-

ple spikes of Purkinje cells are elicited topically at high frequencies [11, 12]. Complex spikes

consist of a fast initial large-amplitude spike followed by a high-frequency burst [13]. This burst

is made of several slower spikelets of smaller amplitude separated from one another by 2–3 ms

[13–15]. Complex spikes are caused by the activation of a single IO neuron that produces a

large electrical event in the soma of the post-synaptic Purkinje cell. This electrical event gener-

ates calcium-mediated action potentials in the Purkinje cell dendrites that, in turn, shape the

complex spike. Simple spike activity is, in fact, mostly suppressed during complex spiking [15].

After each CF-evoked burst, a spike pause prevents Purkinje cells from firing for a period that

increases in the presence of extra dendritic spikes [16–18]. The CF-evoked spike burst-pause

sequences of Purkinje cell responses critically regulate the inhibitory (GABAergic) drive of

MVN synapses, which determines the cerebellar output during sensorimotor adaptation. There-

fore, understanding the dynamics of the characteristic Purkinje cell spike patterns is relevant to

linking cerebellar cell properties to cerebellar-dependent behavioural adaptation. Recent studies

have paved the road in gaining knowledge on the behavioural implication of Purkinje cell spike

modes [3, 15, 19]. In particular, Herzfeld and colleagues suggested that the cerebellum predicts

real-time motion of the eye through the organisation of Purkinje cells into clusters that share

similar CF projections from the IO [3]. The combined activity of bursting and silent Purkinje

cell populations can predict both the actual speed and direction of rapid accurate eye move-

ments (saccades). However, these studies have not assessed the interplay between the different

Purkinje cell spike patterns and the plasticity mechanisms at stake at MVN synapses in shaping

sensorimotor adaptation. MVN neurons, in addition to receiving the inhibitory inputs from

Purkinje cells, are also innervated by the excitatory afferents from the mossy fibres (MFs),

which convey vestibular signals about head movements (Fig 1B). This vestibular information
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also converges onto Purkinje cells through the mossy fibre-granule cell-parallel fibre pathway

(MF-GC-PF; Fig 1B). Therefore, the characteristic firing patterns of Purkinje cells are likely to

play a key role in driving the associative plasticity mechanisms operating at MF-MVN excit-

atory synapses [20–22] and at Purkinje cells-MVN inhibitory synapses [23–26]. The CF-evoked

spike burst-pause sequences of Purkinje cells depend indeed upon the activation of CFs, which

are assumed to convey an ‘instructive’ signal encoding sensory error information [6, 15, 27].

Therefore, the properties of the CF-evoked spike burst-pause patterns (e.g., the relative duration

of the bursts versus the pauses) reflect sensory error related information [15, 19, 28]. The activa-

tion of CFs is critical for inducing different forms of plasticity at PF-Purkinje cell synapses and,

indirectly, at Purkinje cell-MVN synapses [29, 30]. Importantly, plasticity at MF-MVN synapses

also seems to be dependent on Purkinje cell signals [31–33], generated through the MF-GC-PF

pathway and through CF activation. Some computational studies have proposed that plasticity

mechanisms at MF-MVN and Purkinje cell-MVN synapses as key factors in determining cere-

bellar adaptive gain control [31, 32, 34]. These models support the hypothesis of a two-state cer-

ebellar adaptation process [35, 36], with a fast adaptive phase mediated by the cerebellar cortex

(involving plasticity at Purkinje cell synapses) and a slow adaptive process occurring in deeper

structures, involving plasticity at MVN synapses [33, 35–39]. However, these computational

studies do not account for the interaction between the different spiking modes of Purkinje cells

(in particular CF-evoked spike burst-pause dynamics) and the distributed plasticity mecha-

nisms underpinning cerebellar adaptive control [34].

The spiking cerebellar model presented here addresses these issues within a VOR adapta-

tion framework (Fig 1A and 1C). We simulate horizontal VOR (h-VOR) experiments with

mice undertaking sinusoidal (~1 Hz) whole body rotations in the dark [40]. The model incor-

porates the main anatomo-functional properties of the cerebellar microcircuit, with synaptic

plasticity mechanisms at multiple cerebellar sites (Fig 1B; see Materials & Methods).

Results

Spike burst–pause properties of model Purkinje cell responses

The detailed Purkinje cell model reproduces the characteristic response patterns observed

experimentally: tonic simple spiking (20–200 Hz), complex spiking (bursts with high-frequency

spikelet components up to 600 Hz), and post-complex spike pauses (Fig 2A). In the model, CF

discharges trigger transitions between the Purkinje cell Na+ spike output, CF-evoked bursts,

and post-complex spike pauses. As evidenced in [41], in in-vitro slice preparations at normal

physiological conditions, 70% of Purkinje cells spontaneously express a trimodal oscillation: a

Na+ tonic spike phase, a Ca-Na+ bursting phase, and a hyperpolarised quiescent phase. On the

other hand, Purkinje cells also show spontaneous firing consisting of a tonic Na+ spike output

Fig 1. Vestibular ocular reflex (VOR) and cerebellar control loop. (A) Horizontal VOR (h-VOR) protocols compare head rotational movements

(input) against the induced contralateral eye movements (output) via two measurements: the VOR gain, i.e. the ratio between eye and head speeds

(Ev and Hv, respectively); and the VOR phase, i.e. the temporal lag between eye and head velocity signals. (B) Schematic representation of the main

neural layers, cells, connections, and plasticity sites considered in the cerebellar model. Mossy fibres (MFs) convey the sensory signals from the

vestibular organ and they provide the input to the cerebellar network. MFs project sensorimotor information onto granular cells (GCs) and medial

vestibular nuclei (MVN). GCs, in turn, project onto Purkinje cells through parallel fibres (PFs). Purkinje cells also receive excitatory inputs from

the climbing fibres (CFs). CFs deliver the error signals encoding instructive terms that drive motor control learning. Purkinje cells integrate CF and

PF inputs, thus transmitting the difference between head and eye movements. Finally, MVN are inhibited by Purkinje cells and provide the main

cerebellar output. The cerebellar model implements different spike timing dependent plasticity mechanisms at multiple sites: PF-Purkinje cell,

MF-MVN, and Purkinje cell-MVN synapses. (C) Cerebellar feed-forward control system comparing a known reference (head velocity or input

variable) to the actual output (eye velocity) to quantify an error signal, whose delay matches the sensory-motor pathway delay (~100 ms) [7]. The

cerebellum compensates for the difference between actual eye (represented as an inverter logic gate in this scheme) and head velocity profiles. The

head velocity consists of a 1 Hz sinusoidal function iteratively presented to the cerebellar model, mimicking the sinusoidal frequency of the head

rotation in experimental protocols [8].

https://doi.org/10.1371/journal.pcbi.1006298.g001
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Fig 2. Spike burst–pause properties of model Purkinje cell responses. (A) Simulated (left) and electrophysiological (right) recordings of Purkinje cell spike outputs in

response to CF spike excitatory postsynaptic potentials occurring at physiological frequencies (arrows) (data from [41]). CF discharges trigger transitions between

Purkinje cell Na+ spike output and CF-evoked bursts and pauses via complex spikes. Here, the Purkinje cell model was run on the EDLUT simulator (see Methods). (B)

Simulated (left) and experimental (right) Purkinje cell tonic spike frequency during CF discharges aligned with spike-grams in A (data from [41]). N = 10 Purkinje cells

were simulated to compute the tonic spike frequency. (C) Relation between pause duration and pre-complex spike (pre–CS) inter spike intervals (ISIs) when increasing

the amplitude of the injected current: model data (red circles, n = 1000) vs. experimental data [44] (grey to black dots). Grey-to-black lines represent individual cells

(n = 10). The blue dashed line is the linear regression curve fitting model data. The model captures the relation between spike pause duration and pre-complex spike ISI

Burst-pause Purkinje dynamics regulate motor adaptation
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without Ca- Na+ bursts [41–43]. McKay et al. [41] report Purkinje cell recordings exhibiting a

tonic Na+ phase sequence followed by CF-evoked bursts (via complex spikes) and the subse-

quent pause (Fig 2A). The frequency of Purkinje cell Na+ spike output decreases with no corre-

lation with the intervals between CF discharges [41]. The model mimics this behaviour under

similar CF discharge conditions (Fig 2B). It also replicates the relation between spike pause

duration and pre-complex spike inter-spike interval (ISI) duration observed through

electrophysiological recordings [44] (Fig 2C; R2 = 0.9879; p<0.0001). Only ISIs immediately fol-

lowing complex spikes were considered for this analysis. This relation was measured by main-

taining the CF stimulation constant whilst incrementally increasing the amplitude of the PF

input current. The probability distribution of post-complex spike ISIs is also consistent with

experimental data [44] (Fig 2D). The kurtosis (‘peakedness’) of the ISI distribution is 4.24,

which is in the range of kurtosis values measured after tetanisation of mouse Purkinje cells [44].

Model post-complex spike ISI values are skewed rightward (positive skewness value of 0.6463),

consistently with the asymmetric distribution shape observed experimentally [44]. Finally, the

duration of the model post-complex spike pauses is non-linearly related to burst duration (S1A

and S1B Fig), assuming that CF stimuli carrying large error-related signals (as during VOR

adaption) elicit both somatic and extra dendritic Purkinje spikes [16–18].

Role of cerebellar Purkinje spike burst-pause dynamics in VOR adaptation

We assessed h-VOR adaptation by simulating a 1 Hz horizontal head rotation to be compen-

sated by contralateral eye movements (Fig 1A). First, we tested the role of Purkinje spike

burst-pause dynamics in the absence of cerebellar learning, i.e. by blocking synaptic plasticity

across all model projections (i.e., MF-MVN, PF-Purkinje cell, Purkinje cell-MVN). Synaptic

weights were initialised randomly and equally within each projection set. The CF input driving

Purkinje cells was taken as to signal large retina slips, which generated sequences of complex

spikes made of 4 to 6 burst spikelets [15] (Fig 3A, top). The elicited Purkinje spike burst-pause

sequences shaped the temporal disinhibition of target MVN neurons, allowing the incoming

input from MFs to drive MVN responses (Fig 3A, middle). This facilitated a coarse baseline

eye motion (Fig 3A, bottom). Blocking complex spiking in the Purkinje cell model (through

the blockade of muscarinic voltage-dependent channels, see Methods) prevented MF activity

from eliciting any baseline MVN compensatory output (Fig 3B). These results suggest that the

gating mechanism mediated by Purkinje spike burst-pause sequences, which encode transient

disinhibition of MVN neurons, is useful for early and coarse VOR, prior to the adaptive con-

solidation of the reflex through cerebellar learning.

We then activated the LTD/LTP plasticity mechanisms at MF-MVN, PF-Purkinje cell, and

Purkinje cell-MVN synapses (see Materials & Methods). During 10000 s, the model faced a 1

Hz horizontal head rotation, and cerebellar h-VOR learning took place to generate compensa-

tory contralateral eye movements. A sensitivity analysis identified the critical LTD/LTP bal-

ance at MF-MVN and PF-Purkinje cell synapses in order to achieve VOR adaptation (in terms

of both gain and phase). This analysis predicts a very narrow range of values for which LTP

slightly exceeding LTD at MF-MVN synapses ensures learning stability through time. By con-

trast, PF-Purkinje cell synapses admitted a significantly broader range for the LTD/LTP ratio

(S2 and S3 Figs). The same parameter sensitivity analysis for the cerebellar model with no

duration observed electro physiologically [44]. (D) Distribution of ISI values following the complex spike (post-CS). The ISI duration is normalised to pre-CS ISI values.

The Kurtosis for the distribution of post-CS ISI values is 4.24. The skewness is positive (0.6463), thus indicating an asymmetric post-CS ISI distribution. Kurtosis and

skewness values were consistent with Purkinje cell data [44].

https://doi.org/10.1371/journal.pcbi.1006298.g002
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bursting and pause dynamics shows a much wider range of values for the LTD/LTP balance at

both PF-Purkinje cell and MF-MVN synapses (S4 Fig).

A comparison of VOR adaptation accuracy in the presence vs. absence of CF-evoked Pur-

kinje spike burst-pause dynamics shows that VOR gain plateaued three times faster in the

presence of Purkinje complex spikes (Fig 4A, left). Also, the VOR gain converged to [0.8–0.9],

which is consistent with experimental recordings in mice [40], monkeys [45], and humans

[46] (S5 Fig). Conversely, without Purkinje bursting-pause dynamics the VOR gain saturated

Fig 3. Purkinje post–complex spike pauses act as a gating mechanism for early coarse VOR in the absence of cerebellar adaptation. Only half of

h-VOR cycle is represented. Two equal cerebellar network configurations except for the Purkinje cell dynamics were compared under equal

stimulation. (A) The first model accounts for CF-evoked Purkinje spike burst-pause dynamics. CF stimulation generates complex spikes and

subsequent post–complex spike pauses. The latter allows MFs to drive directly the immediate activation of MVN, which facilitates an early but rough

eye movement compensation for head velocity. (B) The second model only exhibits Purkinje tonic firing (i.e., complex spiking is blocked through the

blockade of muscarinic voltage-dependent channels, see Methods), which prevents MFs from eliciting any baseline MVN compensatory output. See S2

and S3 Figs for a sensitivity analysis of parameters regulating the LTD/LTP balance at PF-Purkinje cell and MF-MVN synapses. See also S4 Fig for the

same parameter sensitivity analysis in the absence of Purkinje spike burst-pause dynamics.

https://doi.org/10.1371/journal.pcbi.1006298.g003
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to a value >1 (i.e. over learning) at the end of the adaptation process. In terms of VOR phase,

convergence to 180˚ (i.e., well synchronised counter-phase eye movements) was reached after

approximately 1000 s under both conditions (Fig 4A, right).

A more accurate VOR gain adaptation in the presence of Purkinje complex spiking

reflected a more selective synaptic modulation across learning (Fig 4B–4D). In particular, Pur-

kinje spike burst-pause dynamics facilitated a sparser weight distribution at MF-MVN synap-

ses (Fig 4B), which ultimately shaped VOR adaptation [21]. Indeed, Purkinje burst sizes,

which were assumed to reflect the sensed errors [15, 19, 28], regulated the inhibitory action of

Purkinje cells on MVN, and induced error-dependent LTD at MF-MVN synapses (see Materi-

als & Methods). On the other hand, post-complex spike pauses (disinhibiting MVN) induced

error-dependent LTP at MF-MVN synapses (the larger the error, the larger the burst size, and

the wider the post-complex spike pause in the presence of extradendritic Purkinje cell spikes,

S1 Fig. At the beginning of VOR adaptation, the error was larger, and so were the burst and

pause durations. Because the durations of pauses remained always larger than bursts (S1 Fig.

LTP dominated over LTD at MF-MVN synapses, increasing the learning rate. Therefore, the

spike burst-pause dynamics enhanced the precision of cerebellar adaptation at MVN cells, by

(i) recruiting the strictly necessary MF-MVN projections (i.e., higher kurtosis value of the syn-

aptic weight distribution; Fig 4B), (ii) making a better use of the synaptic range of selected pro-

jections (larger standard deviations with lower overall gains; Fig 4C), and the rate by (iii)
varying synaptic weights selectively (lower averaged synaptic weight variations; Fig 4D).

Purkinje spike burst-pause dynamics facilitates VOR phase-reversal

learning

Phase-reversal VOR is induced when a visual stimulus is given simultaneously in phase to the

vestibular stimulation but at greater amplitude (10% more) [29]. This creates a mismatch

between visual and vestibular stimulation making retinal slips reverse direction[47]. Cerebellar

learning is deeply affected by VOR phase reversal since the synaptic weight distribution at

both PF-Purkinje cell and MF-MVN synapses must be reversed. Here, we first simulated an h-

VOR adaptation protocol (1 Hz) during 10000 s (as before). Then, h-VOR phase reversal took

place during the next 12000 s. Finally, the normal h-VOR had to be restored during the last

12000 s (Fig 5). Our results suggest that the presence of Purkinje spike burst-pause dynamics is

instrumental to phase-reversal VOR gain adaptation (Figs 5A and S7) allowing for fast VOR

learning reversibility consistently with experimental recordings [2] (Fig 5B). Conversely, the

absence of Purkinje complex spiking led to impaired VOR phase-reversal learning with signifi-

cant interference (Fig 5A and 5B). The two models (i.e., with and without Purkinje complex

spiking) behaved similarly in terms of VOR phase adaptation during the same reversal learn-

ing protocol (S6 Fig).

VOR phase-reversal learning demanded first the reduction of the VOR gain, which can be

regarded as a ‘forgetting phase’ (Fig 5B, days 1&2). Then, a ‘synchronisation phase’ took place

with a reverse adaptive action that gradually increased the VOR gain (Fig 5B, days 3&4).

Fig 4. Role of Purkinje spike burst-pause dynamics in VOR cerebellar adaptation. (A) VOR gain and phase adaptation with (purple curve) and without

(green curve) CF-evoked Purkinje spike burst-pause dynamics. VOR cerebellar adaptation starts with zero gain owing to the initial synaptic weights at PF and

MVN afferents (Table 5). Purkinje spike burst-pause dynamics provides better VOR gain adaptation (in terms of both rate and precision) converging to gain

values within [0.8–0.9] (S5 Fig), which are consistent with experimental data [40, 45, 46]. (B) Purkinje complex spiking allows a sparser weight distribution

(with higher Kurtosis) to be learnt at MF-MVN synapses, with significantly lesser MF afferents needed for learning consolidation. (C) The model endowed

with Purkinje complex spiking updates less MF afferents during learning consolidation but their synaptic range is fully exploited. (D) The averaged synaptic

weight variations are more selective during the adaptive process in the presence of Purkinje spike burst-pause dynamics, yet the standard deviation remains

equal.

https://doi.org/10.1371/journal.pcbi.1006298.g004
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Fig 5. Purkinje spike burst-pause dynamics facilitates VOR phase-reversal learning. (A) VOR gain adaptation with

(red curve) and without (green curve) Purkinje spike burst-pause dynamics during: VOR adaptation (first 10000 s),

phase-reversal learning (subsequent 12000 s), and normal VOR restoration (remaining 12000 s). (B) Purkinje spike

burst-pause dynamics provides fast learning reversibility, consistently with experimental recordings [2]. By contrast,

phase-reversal VOR learning is impaired in the absence of Purkinje complex spiking. See S6 Fig for the time course of

VOR phase-reversal learning.

https://doi.org/10.1371/journal.pcbi.1006298.g005
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During the forgetting phase, LTD dominated over LTP at MF-MVN synapses (Purkinje burst

sizes were maximal), thus erasing the memorised weight patterns. During the synchronisation

phase, Purkinje post-complex spike pauses led to a dominant LTP at MF-MVN synapses,

reversing the learnt configuration. The interplay between bursts and post-complex spike

pauses allowed synaptic adaptation at MF-MVN projections to be highly selective, which

resulted in a sparser weight distribution as compared to the case without Purkinje complex

spiking (Fig 6A). Therefore, VOR reverse learning required the adjustment of fewer MF-MVN

synapses, thus facilitating the eye counteraction of the head velocity movement (S8 Fig), and

the weight distribution was reshaped more efficiently with negligible interferences from the

previously learnt patterns (Fig 6B and 6C).

LTP blockades (by dominant LTD) during REMs explain reversal VOR

gain discontinuities between training sessions

VOR phase-reversal learning can take place across several days [2] (Fig 5). Dark periods in-

between training sessions cause reversal VOR gain discontinuities (Fig 7). This phenomenon

has been assumed to result from the decaying of synaptic weights back to their initial values

during sleep [2]. However, the mechanisms underlying this decaying process remain

unknown. We explored possible cerebellar LTD/LTP balance modulation scenarios occurring

during sleep as a consequence of changes in cerebellar activity. During rapid eye movement

sleep (REMs), the mean firing activity of Purkinje cells shows increased tonic firing and

decreased bursting in both frequency and size [48]. The CF average activity during REMs

remains constant at a low frequency regime, showing a tendency in many IO neurons to

diminish their overall frequency [49]. The activation of MFs varies during REMs, unrelatedly

to any apparent behavioural changes, up to 60 MFs/s on average [49].

We modelled Purkinje cell, CF and MF activities during REMs. CFs were stochastically acti-

vated at 1 Hz [48, 49] following a Poisson distribution (S9 Fig). CF activations were also modu-

lated to generate a large event in the Purkinje soma able to elicit bursts of 3 spikes on average

[48]. MFs were stochastically activated by mimicking their activity during REMs (with an

upper bound firing rate of 8–13 Hz). We tested three hypotheses, based on different levels of

cerebellar activity during 6 REMs stages of 3000 s each (i.e., 18000 s of simulation) between

days 1 and 2. In the first scenario, we considered high levels of MF activity (average firing rate

10 Hz), which led to a dominance of LTP at both PF-Purkinje cell and MF-MVN synapses dur-

ing REMs. Consequently, the cerebellar model kept ‘forgetting’ the memory traces as during

the reversal VOR learning of day 1 (Fig 7, blue curve). In the second scenario, we considered

an average MF activity of 2.5 Hz, which made the LTP driven by vestibular activity counterbal-

ance the LTD driven by the CFs. Under this condition, the cerebellar model consolidated

reversal VOR adaptation thus maintaining the synaptic weights at PF-Purkinje and MF-MVN

synapses (Fig 7, green curve). Finally, we considered a low level of MF activity (average 1 Hz),

which made LTD block the LTP action driven by the vestibular (MF) activity. Under this third

scenario, the cerebellar model showed a consistent tendency for weights at PF-Purkinje and

MF-MVN synapses to decay back towards their initial values (Fig 7, red curve). Therefore, the

model predicts that LTP blockades during REMs stages might underlie the reversal VOR gain

discontinuities in-between training sessions, in agreement with experimental data [2] (Fig 7,

black curve).

Purkinje complex spike-pause dynamics under stationary VOR conditions

During transient VOR adaptation and phase reversal learning, retina slips were large causing

vigorous CF discharges (up to 10 Hz) to encode the sensed errors. Consequently, Purkinje cell
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complex spike-pauses were elicited at high frequency during adaptation (Fig 8). As the VOR

error decreased, the frequency of CF-evoked Purkinje bursts decayed to ~1 Hz upon comple-

tion of adaptation (Fig 8). Therefore, during post (and pre) VOR adaptation, model Purkinje

Fig 6. Evolution of synaptic weight distributions during VOR phase-reversal learning. (A) Only the sparser and more selective distribution of MF-MVN

synaptic weights resulting from the interplay between bursts and post-complex spike pauses facilitates an efficient reshaping of the learnt patterns (B),

allowing phase-reversal learning to be achieved (C).

https://doi.org/10.1371/journal.pcbi.1006298.g006
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Fig 7. LTP blockades (due to dominant LTD) during REMs explain reversal VOR gain discontinuities between training sessions. We

simulated 6 REMs stages (for a total of 18000 s of simulation) between day 1 and 2 of VOR phase-reversal learning. High levels of MF activity (10

Hz) leads to a dominance of LTP at both PF-Purkinje cell and MF-MVN synapses during REMs. Hence, during REMs the cerebellar model keeps

‘forgetting’ the memory traces as during day 1 (blue curve). A smaller MF activity (2.5 Hz) leads to a balance of LTP (driven by vestibular activity)

and LTD (driven by the CFs). Thus, the model tends to maintain the synaptic weights learnt during day 1 (green curve). A very low MF activity

(1 Hz) makes LTD to block LTP at PF-Purkinje and MF-MVN synapses. Under this third hypothesis, the synaptic weights tend to decay back

towards their initial value (red curve) in accordance with experimental data [2] (black curve). See S9 Fig for the modelled probabilistic Poisson

process underpinning CF activation.

https://doi.org/10.1371/journal.pcbi.1006298.g007

Fig 8. Purkinje complex spike-pause frequency and VOR gain error during adaptation and post/pre adaptation. The frequency of Purkinje complex spike-pauses

(red squares) diminishes through VOR adaptation from 8–9 Hz to 2–3 Hz under a sinusoidal vestibular stimulus of ~1 Hz. After VOR adaptation, a direct random

stimulation of CFs at 7 Hz during 30 min as in [50] impairs the VOR reflex. The evolution of the VOR gain error (Mean Absolute Error; black curve) during

adaptation, post-adaptation, and artificial random stimulation of CFs.

https://doi.org/10.1371/journal.pcbi.1006298.g008

Burst-pause Purkinje dynamics regulate motor adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006298 March 12, 2019 13 / 35

https://doi.org/10.1371/journal.pcbi.1006298.g007
https://doi.org/10.1371/journal.pcbi.1006298.g008
https://doi.org/10.1371/journal.pcbi.1006298


tonic Na+ spike output dominated and Purkinje cells tended to fire steadily (similar to sponta-

neous activity) with only rare complex spike-pause firing. Under stationary VOR conditions,

(i.e., during pre/post VOR adaptation) model CFs were stochastically activated at ~1 Hz (S9

Fig shows the Poisson-based generative model for the IO firing). Such a CF baseline discharge

at ~1 Hz allowed non-supervised LTP to be counterbalanced at PF-Purkinje cell synapses (see

Materials & Methods), thus preserving pre/post cerebellar adaptation.

Luebke and Robinson [50] found that directly stimulating CFs at 7 Hz during 30 min after

3 days of VOR adaptation would impair the reflex. Model CFs discharged at frequencies larger

than 1 Hz only to signal retina slips (i.e., during VOR adaptation). However, a direct (and

error independent) high-frequency stochastic stimulation of CFs would lead to VOR

impairment. To illustrate this, we simulated a protocol similar to the one used by [50]. As

expected, the number of CF-evoked Purkinje burst-pauses increased as the CF frequency was

artificially incremented through a 7 Hz direct stimulation (Fig 8). Therefore, the VOR gain

error tended to increase indicating an impairment/blockade of the acquired reflex (Fig 8) and

a decrease in VOR gain even with similar CFs discharges observed during VOR adaptation.

Discussion

Marr and Albus theory [51, 52] elicited a large body of research on the link between behavioural

adaptation and the cellular and network properties of the cerebellum. This extensive effort crys-

tallised into a broad range of cerebellar models based on divergent premises. On the one hand,

detailed models were grounded on cellular and synaptic properties observed experimentally

[53–57]. Most of these biophysical models did not aim at driving behavioural adaptation explic-

itly through network-level dynamics. On the other hand, numerous large-scale solutions were

engineered to be computationally efficient for learning sensorimotor tasks, regardless of the

anatomo-functional constraints governing cellular and network cerebellar processes [58–61].

The approach presented here conjugates these two vantage points and focuses on the role of the

multiple spiking patterns of Purkinje cells in cerebellar adaptation. It is well known that Pur-

kinje cells can express fast tonic firing as well as a characteristic burst-pause spiking pattern in

response to excitatory parallel fibre (PF) and climbing fibre (CF) inputs [44]. Nevertheless, we

address here the still uncovered question of how these different spiking patterns regulate the

inhibitory action of Purkinje cells onto target medial vestibular nuclei (MVN) and ultimately

shape the adaptive behavioural control mediated by the cerebellum.

We model cerebellar-dependent adaptation of the rotational vestibulo-ocular reflex (VOR)

(Fig 1A). For natural head rotation frequencies (0.5–5.0 Hz), the VOR gain (i.e., eye velocity

divided by head velocity) and the VOR phase shift (i.e., the time lag between eye and velocity

profiles) are close to 1 and 180˚, respectively [8]. Thus, synchronised counter-phased eye and

head movements stabilise visual targets on the fovea, minimising retina slips and improving

visual acuity [62]. Cerebellar learning, and particularly Purkinje cell response adaptation, is

necessary to mediate online changes in VOR gain control [63, 64]. Thus, numerous VOR

models focused on the cerebellar mechanisms at stake during VOR adaptation. Functional
VOR models capture the input-to-output relationship by abstracting specific cerebellar opera-

tions involved during VOR adaptation. Some functional models are derived from the biologi-

cally inspired principle of feedback-error learning (FEL) [65, 66], combined with non-

parametric statistical learning networks [67, 68]. Other functional VOR models assume that

the cerebellum would operate like a bank of recurrent adaptive linear filters supervised by the

CF acting as an instructive signal [69, 70]. Another set of functional VOR models use locally

weight projection regression (LWPR) algorithms [71] as nonlinear approximators of the gran-

ular and molecular cerebellar layers. The output of these LWPR functions is then used as input
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to Purkinje cells (readout neurons) to control gaze stabilization [72]. Cellular-level VOR models
capture the features of cerebellar neuronal topology and processing. Amongst these

approaches, analogue VOR models (i.e., assuming a neural rate code) can elegantly reproduce

behavioural experimental data [2, 26, 73, 74]. Other cellular-level VOR models focus on spatio-

temporal spiking representations, by capturing STDP mechanisms as well as Purkinje spike

burst-pause dynamics. However, the ability of spiking cerebellar models to cross link cellular,

network, and behavioural VOR data remains partly addressed (despite attempts to model and

interconnect certain sub-circuits as granular layer [57] or olivary nucleus [75–77]).

The approach presented here belongs to the cellular-level spiking VOR models, and tries to

combine neuronal, network, and behavioural description levels. The proposed model mimics the

main properties of the cerebellar microcircuit, and it embodies spike-based LTP/LTD plasticity

mechanisms at multiple synaptic sites (Fig 1C). At the core of the spiking cerebellar network, a

detailed single-compartment model of Purkinje cell reproduces the characteristic tonic, complex

spike, and post-complex spike pause patterns [78, 79]. In order to focus on how CF-evoked spike

burst-pause dynamics of Purkinje cell responses can regulate the adaptive output of the cerebel-

lum, we also use a simpler Purkinje neuron model that cannot express complex spike firing (i.e.,

it can only operate in tonic mode). The main finding of this study is that the CF-evoked spike

burst-pause dynamics of the Purkinje cell is a key feature for supporting both early and consoli-

dated VOR learning. The model predicts that properly timed and sized Purkinje spike burst-

pause sequences are critical to: (1) gating the contingent association between vestibular inputs

(about head rotational velocity) and MVN motor outputs (to determine counter-rotational eye

movements), mediating an otherwise impaired VOR coarse acquisition; (2) allowing the LTD/

LTP balance at MF-MVN synapses to be accurately shaped for optimal VOR consolidation; (3)

reshaping previously learnt synaptic efficacy distributions for VOR phase-reversal adaptation.

Finally, the model predicts that the reversal VOR gain discontinuities observed after sleeping peri-

ods in-between training sessions [2] are due to LTD/LTP balance modulations (and in particular

LTP blockades) occurring during REM sleep as a consequence of changes in cerebellar activity.

Our model captures the fact that similar CF discharges occur during both VOR gain increase

and decrease adaptation [80, 81]. The direction of retinal slips relative to the vestibular stimulus

(assumed to be encoded by CF signals [82]) induces either an increase or a decrease in VOR gain

[83]. Interestingly, the relation between CF activity and the induction of plasticity at Purkinje cell

synapses is described as gating mechanism that varies under these two VOR adaptation para-

digms [81]. Furthermore, optogenetic CF stimulation in VOR gain-decrease paradigms suggest

that changes in Purkinje cell complex spike responses do not only depend upon CF activation

[81]. Our cerebellar model accounts for these observations by means of the mechanism that bal-

ances LTD/LTP plasticity at PF-Purkinje cell synapses. During VOR gain–increase adaptation,

LTD predominantly blocks LTP at modelled PF-Purkinje cell synapses. This results in a synaptic

efficacy decrease as a CF spike reaches the target Purkinje cell (error-related signal). In particular,

a CF spike is more likely to depress a PF-Purkinje cell synapse if the PF has been active within

50–150 ms of the CF spike arrival [84–86]. Increasing LTD at PF-Purkinje cell synapses reduces

the inhibitory action of Purkinje cells on MVN activity, which in turn, increases the VOR gain.

During VOR gain–decrease adaptation [29, 80], LTP dominates at PF–Purkinje cell synapses,

despite the fact that CF inputs are similar to those occurring during gain-increase phases. A raise

in synaptic efficacy at PF-Purkinje cell synapses increases the inhibition of MVN neurons, which

in turn, reduces the VOR gain. LTP at modelled PF-Purkinje cell synapses is non-supervised and

it strengthens a connection upon each PF spike arrival at the target Purkinje cell. This plasticity

mechanism does not need to modulate the input provided by CFs (and then the CF-evoked

spike burst-pause dynamics of Purkinje cells) to counter LTD and decrease the VOR gain, in

accordance to in-vitro experiments [87–89].
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The cerebellar model endowed with CF-evoked Purkinje cell spike burst-pause dynamics

performs better, in terms of adaptation accuracy and consolidation rate, than the model with

Purkinje cells expressing tonic firing only. CF-evoked spike burst-pause patterns appear par-

ticularly useful in a disruptive task such as VOR phase-reversal adaptation. Nevertheless, our

results indicate that complex spikes, post-complex spike pauses, and their relative modulation,

are not essential for VOR control learning and adaptation. This is in agreement with recent

experimental findings challenging the hypothesis that Purkinje cell complex spikes are neces-

sarily required in cerebellar adaptation, and suggesting that their role in motor learning is par-

adigm dependent [90, 91]. Overall, this work provides insights on how the signals provided by

the CFs may instruct, either directly or indirectly, plasticity at different cerebellar synaptic sites

[6, 15, 92]. The results point towards a key role of CF-evoked Purkinje cell spike burst-pause

dynamics in driving adaptation at downstream neural stages. This testable prediction may

help to better understand the cellular-to-network principles underlying cerebellar-dependent

sensorimotor adaptation.

Model assumptions & limitations

This work assumes a gradually modulated CF activity capable of providing an ‘instructive’ sig-

nal to Purkinje cells [92]. Evidence exists showing that the presence of the CF signal enables

VOR acquisition even in the absence of PF-Purkinje LTD [93], whereas erasing the CF signal

impairs VOR adaptation [90]. Nonetheless, the information conveyed by CFs onto Purkinje

cells and its potential role in sensorimotor adaptation is under strong debate. The controversy

about the nature of CF activity has been further roused by the fact that IO functional properties

have so far not been univocally identified [63, 91, 94, 95]. On the one hand, proponents of the

Marr-Albus-Ito motor learning theory hypothesise that CFs carry a binary feedback-error sig-

nal computed by the IO [96]. Yet, recent studies have questioned the hypothesis of a binary CF

signal by demonstrating that the duration of Purkinje cell complex spikes (evoked by CF affer-

ents) can accurately be adjusted based on information that a binary instructive signal could

not support [15, 16, 77, 97, 98]. Our model embraces this second hypothesis. On the other

hand, despite the CF instructive-role hypothesis is widely accepted in cerebellar learning [6],

the overall assumption about IO-mediated feedback-error learning is contrasted by a body of

research proposing different roles for the IO rather than coding error [99]. These works focus

on the periodic nature of CF activity and they put the CF signalling in relation to the timing

aspects of motion [99, 100], and, in particular, to the onset of motion [101]. These counter

hypotheses may be classified under five categories: (i) CFs may act as a temporal information
encoder which operates independently of awareness [102–104]. Subjects were scanned (using

event-related functional MRI) whilst observing changes in stimulus timing that were presented

near each subject’s detection threshold such that subjects were aware of such changes in only

approximately half the trials. The IO and multiple areas within the cerebellar cortex showed a

robust response to time changes regardless of whether the subjects were aware of these

changes. (ii) CFs may play a key role in associative somatosensory learning [105]. In this

approach, CFs are thought to provide little or no information about self-produced motion

and, therefore, they are not useful for correcting or improving motor performance. Yet, during

classical conditioning, the IO may provide the cerebellum with a representation of the uncon-

ditioned stimulus for associative learning. (iii) CF may act as a periodic low-frequency synchro-
niser [106]. Under this framework, CFs are believed to convey many different types of

information, each of which is supposedly assigned to a different narrow time window. Because

movement parameters (i.e., end-point error in a cerebellar target-reaching task) are different

from trial to trial, it is further hypothesised that a group of CFs innervating a longitudinal
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synchronous band shall be recruited to convey one particular form of information in each trial

at a particular timing. Rhythmicity, randomness, and synchrony could therefore coexist. (iv)
CFs may be responsible for motor timing and reset [107, 108]. Some of the most characteristic

morphological features of the olivary neuropil, the glomeruli with their dendrodendritic gap

junctions, seem to enable the synchronous activation of clusters of neurons that may act as a

temporal clock for motricity. Conversely, subthreshold IO oscillation would allow for a

“clock” resetting of a group of neurons. (v) CFs may be functioning in both motor timing and
motor learning [109]. Although synchronous activation of clusters of IO neurons seem to favor

the timing hypothesis, it was hypothesised that the olivary micro circuitry (with its unique

characteristics, such as the combined excitatory and inhibitory input to the olivary spine)

might be able to support both the timing and learning hypotheses, but not the original Marr-

Albus-Ito comparator hypothesis.

The cerebellar model presented here assumes a perfect transmission of CF bursts to target

Purkinje cells, thus neglecting occasional spike transmission failures observed in vivo [16].

Thus, in the model, there exists a linear relationship between the number of CF stimuli and the

length of Purkinje complex spikes. Another limitation is that no distinction between somatic

and dendritic spikes is drawn because the Purkinje model consists of a single compartment.

Therefore, a key assumption of the model is that CF stimuli elicit both somatic spikes and extra

dendritic spikes. Under this assumption, the model predicts a non-linear relation between the

length of CF-evoked bursts and the duration of post-complex spike pauses. Indeed, since we

adopt a graded representation of the CF instructive signal [15, 19, 28], incremental errors are

translated into incremental Purkinje dendritic stimulation intensities. Purkinje calcium-depen-

dent potassium channels activated by Ca2+ influx provoke an after-hyperpolarisation that

inhibits the spike generation and modulates the lengthening of the pause [110]. Furthermore,

larger numbers of CF stimuli were observed to trigger extra Purkinje dendritic spikes, which

influenced Purkinje cell pauses [17, 18]. Also, increasing the number of spikes within the CF

burst in the absence of additional dendritic calcium spikes was reported to lead to a decrease in

the length of the Purkinje post-complex spike pauses [16]. The model thus assumes a cerebellar

operation with a non-linear modulation of the lengths of Purkinje cell post-complex spike

pauses due to extra dendritic spikes and large dendritic stimulations during VOR adaptation.

Finally, the proposed model considers stationary physiological conditions in the generation of

the Purkinje post-complex spike pause (indeed, temperature increase of the cerebellar tissue

[111] or delivery of anaesthesia [112] can induce longer,>500 ms, Purkinje simple spike pauses,

which ultimately may compromise the spike burst-pause dynamics).

A simplification of our model is that it does not account for the putative role of inhibitory

interneurons in the supervised learning mechanism. Understanding the role of this inhibitory

network has stimulated numerous experiments and fuelled a debate [113, 114]. It was observed

that genetic removal of GABAA receptors of Purkinje cells does not significantly impair mice’s

gait and baseline VOR [115], although it does affect the adaptive cerebellar motor control

[116]. It was also proposed that this inhibition might regulate the excitatory drive on Purkinje

cells by granule cell activity [117]. In the rat cerebellar cortex, GABAergic molecular layer

interneurons (which converge on Purkinje cells) are only a small fraction (about 2.3%) of gran-

ule excitatory neurons [118]. Overall, these observations point towards the fact that this inhibi-

tory network might not be at the core of the discriminability of input states, whereas it might

sub-serve the processes of facilitating cerebellar learning and the correct operation of the cere-

bellar network [31, 110, 119, 120]. The model suggests that CF-evoked Purkinje cell spike

burst-pause dynamics is critical to shape MF-MVN synapses, as to optimise the accuracy and

consolidation rate of VOR adaptation. We show that burst and spike pause sequences facilitate

sparser MF-MVN connections, which increases coding specificity during the adaptation
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process. The results predict that the spike burst-pause dynamics should be central to retune

MF-MVN synapses during VOR phase-reversal adaptation. First, it is shown that blocking

complex spike responses (and post-complex spike pauses) in Purkinje cells impairs reverse

VOR adaptation. More strikingly, the results indicate that Purkinje cell bursting and spike

pauses ensure the reversibility of the adaptation process at MF-MVN synapses. Bursts selec-

tively facilitate LTD at MF-MVN connections, which rapidly erases previously learnt memory

traces at these synapses. Subsequently, post-complex spike pauses induce strong LTP at

MF-MVN synapses, which allows the cerebellar output to become rapidly reverse-correlated

to the sensed error. In addition, the memory consolidation of VOR adaptation during sleeping

[2, 73, 121] is also supported by the CF-evoked Purkinje cell spike burst-pause dynamics. CF

stochastically activations at a low frequency (0.9 Hz) during REMs stages maintain a base Pur-

kinje bursting that ultimately facilitates LTP blockades at PF-Purkinje cell and MF-MVN syn-

apses, and it preserves the on-going learning process.

Materials and methods

VOR analysis and assessment

We simulated horizontal VOR (h-VOR) experiments with mice undertaking sinusoidal (~1

Hz) whole body rotations in the dark [40]. The periodic functions representing eye and head

velocities (Fig 1A) were analysed through a discrete time Fourier transform. The VOR gain

was calculated as the ratio between the first harmonic amplitudes of the forward Fourier eye–

and head–velocity transforms:

VOR GAIN G ¼
Aeye� velocity

1

Ahead� velocity
1

ð1Þ

In order to assess the VOR shift phase, the cross-correlation of the eye and head velocity

time series was computed:

xcorr ¼ ðx � yÞ½g� ¼def X
þ1

n¼� 1

x�ðnÞyðnþ gÞ ð2Þ

where x
�

is the complex conjugate of x, and g the lag (i.e., shift phase). The ideal eye and head

velocity lag is ±0.5 after normalisation, with cross-correlation values ranged within [–1, 1],

which is equivalent to a phase shift interval of [–360˚ 360˚].

Simulation of VOR protocols

We simulated a rotational chair test, in which a subject (mouse, monkey, or human) is seated

in a rotatory table. In this protocol, the velocity of rotation is controlled and the subject’s head

is restrained, assuming that the movement of the table is equal to the subject’s head movement.

During normal VOR adaptation, a visual target is provided in anti-phase with vestibular stim-

ulation. The eyes must follow the visual target, thus minimising retinal slips. The vestibular

stimulation and the eye output functions in our simulation were taken as:

Vestibular stimulation ¼ sinð2 � p � tÞ

Eye output function ¼ AE � sinð2 � p � t þ p � �EÞ
ð3Þ

where the ideal VOR experiment values correspond to AE ¼ 1; �E ¼ 0 (visual field fixed). Dur-

ing VOR phase-reversal learning, the visual stimulus is given in-phase with the visual field

but it turns twice the distance of the turntable, i.e. AE = -1.
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Cerebellar spiking neural network model

The cerebellar circuit was modelled as a feed–forward loop capable of compensating head

movements by producing contralateral eye movements (Fig 1B). The connectivity and the

topology of the simulated cerebellar network involved five neural populations: mossy fibres

(MFs), granule cells (GCs), medial vestibular nuclei (MVN), Purkinje cells, and inferior olive

(IO) cells [33, 122–125]. During simulated 1 Hz head rotations, sensorimotor activity was

translated into MF activity patterns that encoded head velocity. MFs transmitted this informa-

tion to both MVN and GCs. The latter generated a sparse representation of head velocity sig-

nals, which was sent to Purkinje cells through the PFs. Purkinje cells were also driven by the

CFs, which conveyed the instructive signal encoding sensory error information (i.e., retina

slips due to the difference between actual and target eye movements, [82]). Finally, Purkinje

cells’ output inhibited MVN neurons, which closed the loop by shaping cerebellar-dependent

VOR control. The CF-Purkinje cell-MVN subcircuit was divided in two symmetric micro-

complexes for left and right h-VOR, respectively. The input-output function of the cerebellar

network model was made adaptive through spike-timing dependent plasticity (STDP) at stake

at multiple sites (Fig 1C). These STDP mechanisms led to both long-term potentiation (LTP)

and long-term depression (LTD) of the ~50000 synapses of the cerebellar model see [126].

This spiking neural network model was implemented in EDLUT [86, 127, 128] an efficient

open source simulator mainly oriented to real time simulations.

Purkinje cell model

We used a detailed Purkinje cell model based on the experimental work by Middelton et al.

[78], and on the modelling work by Miyasho et al. [79]. The model consisted of a single com-

partment with five ionic currents:

dV
dt
¼ � gK � n

4 � ðV þ 95Þ � gNa �m0½V�
3
� h � ðV � 50Þ�

� gCa � c
2 � ðV � 125Þ � gL � ðV þ 70Þ � gM �M � ðV þ 95Þ ð4Þ

with gK denoting a delayed rectifier potassium current, gNa a transient inactivating sodium cur-

rent, gCa a high-threshold non-inactivating calcium current, gL a leak current, and gM a musca-

rinic receptor suppressed potassium current (see Table 1).

The dynamics of each gating variable evolved as follows:

x・ ¼
x0½V� � x
tx½V�

ð5Þ

where x indicates the variables n, h, c, and M. The implemented equilibrium function is deter-

mined by the term x0½V� and time constant tx½V� (Table 2).

The sodium activation variable was replaced and approximated by its equilibrium function

m0½V�. M-current presents a temporal evolution significantly slower than the rest of the five

Table 1. Ionic conductance densities.

Conductance type Soma (mho/cm2)

gK–delayed rectifier potassium current 0.01
gNa–transient inactivating sodium current 0.125
gCa–high threshold 0.001
gM–muscarinic receptor 0.75
gL–leak current (anomalous rectifier) 0.02

https://doi.org/10.1371/journal.pcbi.1006298.t001
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variables thus provoking a slow-fast system able to reproduce the characteristic Purkinje cell

spiking modes (Fig 2).

The final voltage dynamics for the Purkinje [78, 79]cell model was given by:

dV
dt
¼
� gK � n4 � ðV þ 95Þ � gNa �m0½V�

3
� h � ðV � 50Þ � gCa � c2 � ðV � 125Þ � gL � ðV þ 70Þ � gM �M � ðV þ 95Þ þ

Injected Current
Membrane Area

Membrane Capacitance
ð6Þ

where the parameters Membrane Area and Membrane Capacitance are provided in Table 3,

and Injected Current is the sum of all contributions received through individual synapses (see

Eqs 7–9 below).

First, we validated the detailed Purkinje cell model (Eqs Eqs 4–6) in the Neuron simulator.

Subsequently, we reduced the Purkinje cell model to make it compatible with an event-driven

lookup table simulator (i.e, the EDLUT simulator) for fast spiking neural network simulations

[86, 127]. In the reduced Purkinje cell model, IK and INa currents were implemented through a

simple threshold process that triggers the generation of a triangular voltage function each time

the neuron fires [129]. This triangular voltage depolarisation drives the state of ion channels

similarly to the original voltage depolarisation during the spike generation. We inserted the

differential equation defined in Eq 6 within EDLUT. We used an in-house fixed-step numeri-

cal integration method compatible with GPUs (bi-fixed integrative method). Our numerical

integration method provided similar accuracy than the variable step-size numerical integration

methods provided by NEURON with considerably less computational cost [128]. To make

NEURON simulation comparable with EDLUT as in S1 Fig, the stimulation of the Purkinje

cell was carried out by spike trains through an AMPA synapse (single decaying exponential

with τ = 1 ms, Eexc = 0 mV). We emulated the effect of the PF over the Purkinje cell through a

spike train of 55 Hz and a synaptic weight of gexc = 8 μS. We used CF synaptic stimulations

through an AMPA synapse with weight of gexc = 80 μS, (see asterisks in Fig 2C). The spike tim-

ing traces of the Purkinje spike burst-pause dynamics under equal Purkinje stimulation were

consistent in NEURON and EDLUT. Both the EDLUT and NEURON source codes are avail-

able at the following URLs:

www.ugr.es/~nluque/restringido/Burst-pause_Purkinje_dynamics_regulate_motor_

adaptation_NEURON_MODEL_COMPLETE.rar

Table 2. Ionic conductance kinetic parameters.

Conductance type Steady–state

Activation/Inactivation

Time constant (ms)

gK–delayed rectifier potassium current x0½V� ¼ 1

1þe
� V � 29:5

10

tx½V� ¼
0:25þ 4:35 � e

V þ 10
10 if V � � 10

0:25þ 4:35 � e
� V � 10

10 if V > � 10

8
>>><

>>>:

gNa–transient inactivating sodium current x0½V� ¼ 1

1þe
Vþ59:4

10:7
tx½V� ¼ 0:15þ 1:15

1þe
Vþ33:5

15

m0½V� m0½V� ¼ 1

1þe
� V � 48

10
�m

Forward Rate Function(α) Backward Rate Function(β)

gCa–high threshold a ¼ 1:6
1þe� 0:0072�ðV� 5Þ b ¼

0:02�ðVþ8:9Þ

e
Vþ8:9

5 � 1

gM–muscarinic receptor suppressed potassium current a ¼ 0:3

1þe
� V� 2

5
b ¼ 0:001 � e� V � 70

18

Steady–state
Activation/Inactivation

Time constant(ms)

x0½V� ¼ a

aþb
tx½V� ¼ 1

aþb

https://doi.org/10.1371/journal.pcbi.1006298.t002
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www.ugr.es/~nluque/restringido/CODE_Burst-pause_Purkinje_dynamics_regulate_

motor_adaptation_EDLUT.rar

User: REVIEWER, password: REVIEWER (for both).

Other cerebellar neuron models

The other cerebellar neurons (granule cells, MVN cells, . . .) were simulated as leaky integrate–

and–fire (LIF) neurons, with excitatory (AMPA) and inhibitory (GABA) chemical synapses:

Cm �
dVm� c

dt
¼ gAMPAðtÞ � ðEAMPA � Vm� cÞ þ gGABAðtÞ � ðEGABA � Vm� cÞ þ Grest � ðErest � Vm� cÞ ð7Þ

where Cm denotes the membrane capacitance, EAMPA and EGABA are the reversal potential of

each synaptic conductance, Erest is the resting potential, and Grest indicates the conductance

responsible for the passive decay term towards the resting potential. Conductances gAMPA and

gGABA integrate all the contributions received by each receptor type (AMPA and GABA)

through individual synapses and they are defined as decaying exponential functions [86, 130]:

gAMPAðtÞ ¼

0 ; t � t0

gAMPAðt0Þ � e
�

ðt � t0Þ

tAMPA ; t > t0

ð8Þ

8
><

>:

gGABAðtÞ ¼

0 ; t � t0

gGABAðt0Þ � e
�

ðt � t0Þ

tGABA ; t > t0

ð9Þ

8
><

>:

with t representing the simulation time, t0 being the time arrival of an input spike, and τAMPA

and τGABA denoting the decaying time constant for AMPA and GABA receptors, respectively.

Note that we also used the LIF neuronal model (Eqs 7–9) to simulate Purkinje cells that

could only express tonic spike firing (Fig 3B). These Purkinje cells with compromised CF-

evoked spike burst-pause dynamics provided a coarse phenomenological model of Kv3.3-defi-

cient Purkinje neurons (as in Kcnc3 mutants, in which the absence of voltage-gated potassium

channel Kv3.3 drastically reduces spikelet generation within complex spikes of cerebellar Pur-

kinje cells) [131]. Note, however, that completely suppressing CF-evoked spike burst-pause

dynamics would require more severe actions. A plausible way for obtaining no-bursting-after-

CF stimulus may consist in modulating GABAB Purkinje cell receptors via Baclofen, the spe-

cific GABAB agonist (as shown in [132]). Table 4 summarises the parameters used for each cell

and synaptic receptor type.

Table 3. Geometrical parameters.

Geometrical parameters

Cylinder length of the soma 15μm
Radius of the soma 8μm
Membrane capacitance 1μF/cm2

Axial resistivity 100 O-CM(axon) 250O-CM(dendrites)

Number of segments 1

https://doi.org/10.1371/journal.pcbi.1006298.t003
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Cerebellar neural population models

Mossy fibres (MFs). N = 100 MFs were modelled as LIF neurons (Eqs 7–9). Consistently

with the functional principles of VOR models of cerebellar control [2], the ensemble MF activ-

ity was generated following a sinusoidal shape (1 Hz with a step size of 0.002 ms) to encode

head movements [2, 142, 143]. The overall MF activity was based on non-overlapping and

equally sized neural subpopulations that allowed a constant firing rate of the ensemble MFs to

be maintained over time. Importantly, two different times always corresponded to two differ-

ent subgroups of active MFs ensuring the overall constant activity. (Network connectivity

parameters summarised in Table 5).

Granular cells (GCs). The granular layer included N = 2000 GCs and it was implemented

as a state generator [144–147], i.e. its inner dynamics produced time–evolving states even in

Table 4. Parameters of the LIF cell types.

Parameter Granule Cell Purkinje LIF Cell MVN Cell

Refractory period 1ms 2ms 1ms
Membrane capacitance 2pF 40pF 2pF

�

Total excitatory
peak conductance

1nS�100 1.3nS�
�175000�10%

�
1nS�7

Total inhibitory
peak conductance

1nS�200 3nS�150 30nS�1

Threshold –40mV –52mV –40mV
Resting potential –70mV –70mV –70mV

Resting conductance 0.2nS 1.6nS 0.2nS
Resting

time constant (τrest)
10ms 25ms 10ms

Excitatory–synapse
time constant (τAMPA)

0.5ms 0.5ms 0.5ms

Inhibitory–synapse
time constant (τGABA)

10ms 1.6ms 10ms

Parameters obtained from the following papers:

Granule cell (GC)[133–137]. Only the rapidly decaying component of AMPA is modelled (τAMPA=0.5ms) the presence of slowly decaying components in some GC caused

by spill overs of glutamate was not taken into consideration [133](τAMPA=3ms)[138] Purkinje cell (PC) [137, 139–141]. MVN data were extracted from unpublished

material from Prof. D’Angelo’s lab.

� Where 10% means the ratio of active connections PF–PC (out of the total 175000 PFs)

https://doi.org/10.1371/journal.pcbi.1006298.t004

Table 5. Summary of neurons and synapses.

Neurons Synaptic weights (nS)

Presynaptic cell number Postsynaptic cell Number of synapses Type Initial weight (Detailed/non Detailed PC) Weight range

Mossy Fibres (100) Granular Cells 8000 AMPA 0.35/0.35�

Medial Vestibular Nuclei 200 AMPA 0.0/0.0 [0, 10] /[0, 10]

Climbing Fibres (2) Purkinje Cells 20 AMPA 40/2.5

Granular Cells (1000) Purkinje Cells 40000 AMPA 3.4/3.75 [0, 3.75] / [0, 5.5]

Purkinje cell (20) Medial Vestibular Nuclei 20 GABA 0.15/0.15 [0 10] / [0, 10]

Medial Vestibular Nuclei (2)

� Parameter used for generating the Granular layer activity. Since this activity remained invariant during VOR adaptation, it was stored offline in a file and then loaded

in computation time.

https://doi.org/10.1371/journal.pcbi.1006298.t005
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the presence of a constant MF input [59]. The granular layer generated non-overlapped spatio-

temporal patterns that were repeatedly activated in the same sequence during each learning

trial (1 Hz rotation for 1 s)). 500 different states encoded each second of the 1 Hz learning trial,

each state consisting of four non-recursively activated GCs.

Climbing fibres (CFs). N = 2 CFs carried the instructive signal (from the IO) to the popu-

lation of Purkinje cells. The two CFs handled clockwise and counter–clockwise sensed errors.

CF responses followed a probabilistic Poisson process. Given the normalised error signal εðtÞ
and a random number ηðtÞ between 0 and 1, a CF fired a burst if εðtÞ > ηðtÞ, otherwise it

remained silent [84, 120, 148]. Thus, a single CF burst encoded time information regarding

the instantaneous error. Furthermore, the probabilistic spike sampling of the error ensured a

proper representation of the whole error region over trials, whilst maintaining the CF activity

below 10 Hz per fibre (similar to electrophysiological data; [149]). The evolution of the sensed

error could be sampled accurately even at such a low frequency [148, 150]. A graded represen-

tation of the instructive signal [15, 19, 28] enabled the correlation between the intensity of the

sampled instantaneous error and the number of the spikes within the olivary burst:

Sspikes : ½0; 1� � R! R
ε!y¼SspikesðεÞ

SspikesðεÞ ¼

2 if 0:25 � ε � 0:50

3 if 0:50 � ε � 0:75

4 if 0:75 � ε � 0:85

5 if 0:85 � ε � 0:95

6 if 0:95 � ε � 1:0

ð10Þ

8
>>>>>>>>>><

>>>>>>>>>>:

The model assumed a perfect linearly correlated transmission of olivary bursts from CFs to

the target Purkinje cells. Hence, the number of spikes in the Purkinje complex spikes linearly

depended on the number of stimuli in the CF burst [16]. CFs were simulated to transmit from

2 to 6 CF stimuli, delivered at inter-stimulus intervals of 2 ms [16], signalling the sensed error

to be compensated. For the sake of computational efficiency, only 2 CFs were simulated

(instead of 20). In the cerebellum, each Purkinje cell is innervated by a single CF [151] coming

from the associated IO in the olivary system. However, no olivary system was considered here

and, consequently, CFs sensing clockwise and counter–clockwise errors were equally activated

(it would suffice 1 CF sensing clockwise and 1 CF sensing anti-clockwise errors).

Purkinje cells. N = 20 Purkinje cells were divided in two subpopulations of 10 neurons

each. Each subpopulation received the inputs from one CF encoding the difference between

(either rightward or leftward) eye and head movements. Each Purkinje cell also received 2000

PF inputs. Since real Purkinje cells are innervated by about 150000 PFs [152], the weights of

the PF–Purkinje cells synapses of the model were scaled so as to obtain a biologically plausible

amount of excitatory drive. Each of the two subgroups of 10 Purkinje cells targeted (through

inhibitory projections) one MVN cell, responsible for either clockwise or counter-clockwise

compensatory motor actions (ultimately driving the activity of agonist/antagonist ocular

muscles).

Medial vestibular nuclei (MVN). The activity of N = 2 MVN cells produced the output of

the cerebellar model. The two MVN neurons handled clockwise and counter–clockwise motor

correction, respectively. Each MVN neuron received excitatory projections from all MFs

(which determined the baseline MVN activity), and inhibitory afferents from the
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corresponding group of 10 Purkinje cells (i.e., the subcircuit IO–Purkinje cell–MVN was orga-

nised in a single microcomplex).

Translation of MVN spike trains into analogue eye motor commands. MVN spike

trains were translated into analogue output signals through a Finite Impulse Response filter

(FIR) [153]. Let xðtÞ ¼
XM

j¼t

dðt � tjÞ denote a MVN spike train, with tj being the firing times of

the corresponding neuron. If h(t) indicates the FIR kernel, then the translated MVN output is:

OutputðtÞ ¼ ðh � xÞðtÞ ¼
XM

j¼t

hðt � tjÞ ð11Þ

Note that a delay is introduced in the generated analogue signal. This delay is related to the

number of filter coefficients and to the shape of the filter kernel h(t). In order to mitigate this

effect, we used an exponentially decaying kernel:

Kernel ¼ hðtÞ ¼ e�
M
tM ð12Þ

where M is the number of filter taps (one per integration step) and τM is a decaying factor. At

each time step, the output signal value only depends on its previous value and on the input

spikes in the same time step. Therefore, this filter is implemented by recursively updating the

last value of the output signal. Importantly, this kernel is similar to postsynaptic current func-

tions [154, 155], thus facilitating a biological interpretation. Furthermore, this FIR filter is

equivalent to an integrative neuron [156]. The final eye movement is taken proportional to the

inverse value of Output(t).

Synaptic plasticity rules

PF–Purkinje cell synaptic plasticity. The LTD/LTP balance at PF–Purkinje cell synapses

was based on the following rule (S2 Fig shows sensitivity analyses accounting for LTD/LTP

balance):

LTD:DwPFj � PCi
ðtÞ ¼

ZIOspike

� 1

k
t � tIOspike

tLTD

� �

� dGCspike
ðtÞ � dt if PFj is active at t

LTP:DwPFj � PCi
ðtÞ ¼ a � dGCspike

ðtÞ const: otherwise

ð13Þ

where ΔWPFj–PCi(t) denotes the weight change between the jth PF and the target ith Purkinje

cell; tLTD is the time constant that compensates for the sensorimotor delay (100ms); ðGCspike
(t) is the Dirac delta function corresponding to an afferent spike from a PF (i.e., emitted by a

GC); and the kernel function k(x) is defined as [126]:

kðxÞ ¼ e� x � sinðxÞ20
ð14Þ

The convolution in Eq 14 was computed on presynaptic PF spikes arriving 100 ms before a

CF spike arrival, accounting for the sensorimotor pathway delay [7, 96, 120, 148, 157]. Note

that the kernel k(x) allows the computation to be run on an event–driven simulation scheme

as EDLUT [86, 120, 148, 157], which avoids integrating the whole kernel upon each new spike

arrival. Finally, as shown in Eq 13, the amount of LTP at PF–Purkinje cell synapses was fixed,

with an increase in synaptic efficacy equal to α each time a spike arrived through a PF to the

target Purkinje cell.
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MF–MVN synaptic plasticity. The LTD/LTP dynamics at MF-MVN synapses was taken

as (S2 Fig shows sensitivity analyses accounting for LTD/LTP balance):

LTD:DwMFj � MVNi
ðtÞ ¼

Zþ1

� 1

k
t � tPCspike

sMF� MVN

� �

� dMFspike
ðtÞ � dt if PCj is active at t

LTP:DwMFj � MVNi
ðtÞ ¼ a � dMFspike

ðtÞ const: otherwise

ð15Þ

with ΔWMFj–MVNi(t) denoting the weight change between the jth MF and the target ith MVN.

sMF� DCN standing for the temporal width of the kernel; dMF representing the Dirac delta func-

tion that defines a MF spike; and the integrative kernel function k(x) defined as [126]:

kðxÞ ¼ e� jxj � cosðxÞ2 ð16Þ

Note that there is no need to compensate the sensorimotor pathway delay at this site

because it is already done at PF-Purkinje cell synapses (τLTD in Eq 13).

The STDP rule defined by Eq 15 produces a synaptic efficacy decrease (LTD) when a spike

from the Purkinje cell reaches the targeted MVN neuron. The amount of synaptic decrement

(LTD) depends on the activity arrived through the MFs. This activity is convolved with the

integrative kernel defined in Eq (16). This LTD mechanism considers those MF spikes that

arrive after/before the Purkinje cell spike arrival within the time window defined by the kernel.

The amount of LTP at MF-MVN synapses is fixed (Ito, 1982;[126, 158], with an increase in

synaptic efficacy each time a spike arrives through a MF to the targeted MVN.

Purkinje cell–MVN synaptic plasticity. The STDP mechanism implemented at Purkinje

cell-MVN synapses [126] consists of a traditional asymmetric Hebbian kernel

DwPCj � MVNi
ðtÞ ¼

LTP � e
�

tMVN post � tMVN pre

sþPC� MVN if tMVN post � tMVN pre

LTD � e
�

tMVN pre � tMVN post

s�PC� MVN otherwise

ð17Þ

8
>>>>><

>>>>>:

where ΔWPCj–MVNi(t) is the weight change between the jth PC and the target ith MVN, sþPC� MVN

and s�PC� MVN are the time constants of the potentiation and depression components set to 5ms

and 15ms respectively; and LTDmax/LTPmax (0.005/0.005) are the maximum weight depres-

sion/potentiation change per simulation step. The tmvn_post and tmvn_pre indicate the postsyn-

aptic and presynaptic MVN spike time. This STDP rule is consistent with the fact that

plasticity at Purkinje cell-MVN synapses depends on the intensity of MVN and Purkinje cell

activities [23–26] and it provides a homeostatic mechanism in balancing the excitatory and

inhibitory cell inputs to MVN [124, 159].

Supporting information

S1 Fig. Purkinje cell pause duration. (A) In the model, CF signals modulate both the burst

size (i.e., the number of spikes within the burst [17, 18]) and the duration of post-complex

spike pause. (B) Across multiple simulations, we progressively increased the size of CF burst

stimulation: from 4 ms (i.e., 2 spikes) to 12 ms (i.e., 6 spikes), by steps of 2 ms. For each of the

5 stimulation conditions, we varied the depolarisation current injected through PFs to elicit

Purkinje responses within their operative frequency range (i.e., 50–250 Hz). We then used a

Kruskal-Wallis test to assess the relationship between Purkinje spike pause lengths and CF

burst duration. We found a statistically significant difference (Chi square = 145.61, p<10−20,
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df = 4) amongst the five conditions (i.e. CF burst sizes: 4, 6, 8, 10, and 12 ms). A Bonferroni

post hoc test revealed that only the conditions 4 ms and 6 ms produced significantly shorter

pauses, whereas the non-linear relation plateaued from 6–8 to 12 ms. (C) In the Purkinje cell

model, the CF stimulation–CS pause length relationship is mediated by the muscarinic recep-

tor channel. We simulated a random modulation of the time constant of the muscarinic recep-

tor ion channel to generate stochastic Purkinje post-complex spike pauses (i.e. independently

from CF stimulation). To do so, we multiplied the time constant of the muscarinic channel by

a random factor at each time step (0.002 ms). Hence, whilst the activation/inactivation of the

muscarinic channel remained unaltered, therefore maintaining Purkinje spike bursting, the

duration of pauses was randomly modulated. The modified Purkinje cell model was used to

run the same series of simulations as in B by gradually increasing the CF burst size (i.e., 4, 6, 8,

10, 12 ms). The Kruskal-Wallis test confirmed that the inserted stochastic mechanism removed

any correlation between the length of Purkinje spike pauses and the CF burst sizes (Chi square

= 4.06, p = 0.398, df = 4; S1C Fig). The model with random length post-complex spike pauses

was then compared against the original model (B) in terms of performance in VOR adaptation

(S7 Fig).

(PDF)

S2 Fig. Critical LTD/LTP balance at PF-Purkinje cell and MF-MVN synapses. Parameter

sensitivity analysis. Cerebellar adaptation modulates PF-Purkinje cell synaptic weights as well

as MF-MVN synapses [6, 126]. For synaptic adaptation, the model uses supervised STDP,

which exploits the interaction amongst unsupervised and supervised cell inputs to regulate

and stabilise postsynaptic activity. Balancing supervised STDP, and the resulting synaptic

modification dynamics, is critical, given the high sensitivity of the process that determines the

LTD/LTP ratio [160, 161]. A sensitivity analysis of the parameters governing LTD and LTP,

shows that LTP exceeding LTD values for a narrow range at MF-MVN synapses preserves

VOR learning stability. This holds independently for both VOR gain and phase (A) as well as

for the combination of the two (B). By contrast, PF-Purkinje cell synapses admit broader limits

for the LTD/LTP ratio (A, B). Detailed description: we systematically simulated LTP/LTD ratio

values at PF-Purkinje cell and MF-MVN synapses within a plausible range that may satisfy the

expected h-VOR outcome. As simulations ran, the solutions were iteratively checked until

finding the set of LTD/LTP ratio values that exhibited the better performance in terms of h-

VOR gain and phase. LTD/LTP balance at each site was modified by systematically multiplying

LTD by 1.5N where –11�N� 12 for PF-Purkinje cell and MF-MVN synapses. For each

parameter setting, the cerebellar model underwent 10 000 s of VOR learning (1Hz head rota-

tion movement to be compensated by contralateral eye movements. (A) Final VOR gain and

phase plotted over the LTD/LTP range of values that were tested. (B) Combined VOR gain

and phase (normalised) as a function of the LTD/LTP ratio. At PF-Purkinje cell synapses the

LTD/LTP was well balanced for N values ranging between [–1, 7]. At MF-MVN the LTD/LTP

balance was more critical since N is within a narrower band range [–1, 0]. The reddish area

within the last plot indicates the optimal parameters range. LTP must exceed LTD at MF-

MVN synapses for optimal VOR performance. This result is consistent with the unsupervised

nature of the LTP for the kernel defined for MF-MVN STDP. Unsupervised LTP with larger

values than LTD takes the MF-MVN synaptic weights to the upper bound of their synaptic

efficacy, thus provoking more MVN activations. In the absence of LTD counteraction, the cer-

ebellar output is, therefore, upper saturated. LTD driven by Purkinje cell activity blocks LTP at

MF-MVN synapses, thus shaping the cerebellar compensatory output.

(PDF)
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S3 Fig. LTD/LTP balance at MF-MVN synapses over time. Whilst LTD/LTP balance was

fixed at PF-PC synapses, we modified the LTD/LTP balance at MF-MVN synapses by system-

atically varying the ratio by 1.5N where –11� N� 12 during a 10000 s simulation. (A) Final

VOR gain and phase plotted as a function of the tested LTD/LTP range across time. (B) Com-

bined VOR gain and phase (normalised) over time. A proper balance between LTD and LTP

(ratio of approximately 0.4) makes the cerebellum perform optimally after 750 sec.

(PDF)

S4 Fig. Parameter sensitivity analysis for the LTD/LTP balance at PF-Purkinje cell and

MF-MVN synapses in the absence of Purkinje spike burst-pause dynamics. Similar to S2

Fig, the parameters regulating the LTD/LTP ratio were exhaustively tested whilst the cerebellar

model without Purkinje complex spiking underwent h-VOR learning during a 10000 s simula-

tion. (A) Final VOR gain and phase plotted over the LTD/LTP range of tested values. (B)

Combined VOR gain and phase (normalised) as a function of the LTD/LTP ratio. LTD/LTP at

both PF-Purkinje cell synapses is well balanced for N values ranged between [–1, 7]. Thus, the

absence of bursting and pause dynamics leads to a wider range values for the LTD/LTP bal-

ance.

(PDF)

S5 Fig. VOR gain of nine subjects [162] vs. VOR gain obtained from the cerebellar model

tested at multiple frequencies during passive head rotations. Average VOR gain/phase cal-

culated by taken gain values each 400 s over the last 4000 s of the VOR adaptation process

(10000 s) over a range of frequencies within the natural head rotation range [0.05-5Hz]. Con-

sistently with the known frequency spectrum of the vestibular system [163], VOR gain

remained relatively stable across the tested frequencies.

(PDF)

S6 Fig. VOR phase-reversal learning. Time course of the VOR phase. (A) VOR phase adap-

tation with (red curve) and without (green curve) Purkinje spike burst-pause dynamics. (B)

Focus is on the phase-reversal period and comparison with experimental data [2].

(PDF)

S7 Fig. The presence of Purkinje post-complex spike pauses is relevant to VOR adaptation.

VOR gain adaptation mediated by the model with Purkinje spike burst-pause dynamics

(orange and red curves, with stochastic vs. burst-dependent pause lengths, respectively; S1 Fig)

and by the model without spike burst-pause dynamics (green curve). The simulated protocol

is the same of Fig 5: VOR adaptation (first 10 000 s), phase-reversal learning (subsequent 12

000 s), and VOR restoration (remaining 12000 s). The presence of Purkinje spike burst-pause

dynamics, regardless the relation between CF burst sizes and pause lengths (S1 Fig), improves

the performance of cerebellar-dependent VOR adaptation.

(PDF)

S8 Fig. Eye velocity evolution during VOR phase-reversal learning. (A) Only the eye veloc-

ity movement corresponding to the sparser and more selective distribution of MF-MVN syn-

aptic weights is able to counteract the head velocity movement in counter phase (B), as phase-

reversal learning is achieved (C).

(PDF)

S9 Fig. Climbing fibre activation. In the model, CF responses follow a probabilistic Poisson

process. Given the normalised error signal εðtÞ obtained from the retina slip and a random

number ZðtÞ between 0 and 1, the model CF fires a spike if εðtÞ > ZðtÞ; otherwise, it remains

silent[84] A single spike is then able to report timed information regarding the instantaneous
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error. Furthermore, the probabilistic spike sampling of the error ensures that the entire error

region is accurately represented over trials with a constrained CF activity below 10 spikes per

second, per fibre (CF activated between 1–10 Hz). Hence, the error evolution is accurately

sampled even at a low frequency [148, 150]. This firing behaviour is consistent to those

observed in neurophysiological recordings [149].

(PDF)
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18. Zang Y, Dieudonné S, De Schutter E. Voltage-and Branch-Specific Climbing Fiber Responses in Pur-

kinje Cells. Cell reports. 2018; 24(6):1536–49. https://doi.org/10.1016/j.celrep.2018.07.011 PMID:

30089264

19. Najafi F, Giovannucci A, Wang SS-H, Medina JF. Coding of stimulus strength via analog calcium sig-

nals in Purkinje cell dendrites of awake mice. eLife. 2014; 3. https://doi.org/10.7554/eLife.03663

PMID: 25205669

20. Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annual rev Neu-

rosci. 1981; 4(1):273–99.

21. McElvain LE, Bagnall MW, Sakatos A, du Lac S. Bidirectional plasticity gated by hyperpolarization con-

trols the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron. 2010; 68

(4):763–75. https://doi.org/10.1016/j.neuron.2010.09.025 PMID: 21092864

22. Menzies JR, Porrill J, Dutia M, Dean P. Synaptic plasticity in medial vestibular nucleus neurons: com-

parison with computational requirements of VOR adaptation. PloS one. 2010; 5(10):e13182. https://

doi.org/10.1371/journal.pone.0013182 PMID: 20957149

23. Aizenman C, Manis P, Linden D. Polarity of long-term synaptic gain change is related to postsynaptic

spike Neuron. 1998; 21(4):827–35. PMID: 9808468

24. Morishita W, Sastry B. Postsynaptic mechanisms underlying long-term depression of gabaergic trans-

mission in neurons of the deep cerebellar nuclei. J Neurophysiol. 1996; 76(1):59–68. https://doi.org/

10.1152/jn.1996.76.1.59 PMID: 8836209

25. Ouardouz M, Sastry B. Mechanisms underlying ltp of inhibitory synaptic transmission in the deep cere-

bellar nuclei. J Neurophysiol 2000 84(3):1414–21. https://doi.org/10.1152/jn.2000.84.3.1414 PMID:

10980014

26. Masuda N, Amari S. A computational study of synaptic mechanisms of partial memory transfer in cere-

bellar VOR learning. J Comput Neurosci. 2008; 24(2):137–56. https://doi.org/10.1007/s10827-007-

0045-7 PMID: 17616795

27. Badura A, Schonewille M, Voges K, Galliano E, Renier N, Gao Z, et al. Climbing Fiber Input Shapes

Reciprocity of Purkinje Cell Firing. Neuron. 2013; 78(4):700–13. https://doi.org/10.1016/j.neuron.2013.

03.018 PMID: 23643935

28. Najafi F. Trial-by-trial coding of instructive signals in the cerebellum: Insights from eyeblink condition-

ing in mice: University of Pennsylvania; 2014.

29. Gao Z, vanBeugen BJ, De Zeeuw CI. Distributed Synergistic Plasticity and Cerebellar Learning. Nat

Rev Neurosci. 2012; 13:1–17.

30. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic

plasticity in the cerebellum. Nat Neurosci. 2001; 4(5):467–75. https://doi.org/10.1038/87419 PMID:

11319554

31. Garrido JA, Luque NR, D’Angelo E, Ros E. Distributed cerebellar plasticity implements adaptable gain

control in a manipulation task: a closed-loop robotic simulation. Front Neural Circuits. 2013; 7.

32. Luque NR, Garrido JA, Carrillo RR, D’Angelo E, Ros E. Fast convergence of learning requires plastic-

ity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simu-

lation. Front Comput Neurosci. 2014; 8.

33. Medina JF, Mauk MD. Computer simulation of cerebellar information processing. Nat Neurosci. 2000;

3 1205–11. https://doi.org/10.1038/81486 PMID: 11127839

34. D’Angelo E, Mapelli L, Casellato C, Garrido JA, Luque NR, Monaco J, et al. Distributed Circuit Plastic-

ity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum. 2015:1–13. https://doi.org/10.

1007/s12311-014-0614-z

35. Shadmehr R, Brashers-Krug T. Functional stages in the formation of human long-term motor memory.

J Neurosci. 1997; 17(1):409–19. PMID: 8987766

36. Shadmehr R, Holcomb HH. Neural correlates of motor memory consolidation. Science. 1997; 277

(5327):821–5. PMID: 9242612

Burst-pause Purkinje dynamics regulate motor adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006298 March 12, 2019 29 / 35

http://www.ncbi.nlm.nih.gov/pubmed/5944665
https://doi.org/10.3389/fncir.2013.00001
https://doi.org/10.1016/j.neuron.2009.03.023
http://www.ncbi.nlm.nih.gov/pubmed/19447094
https://doi.org/10.1523/JNEUROSCI.0559-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18650337
https://doi.org/10.1016/j.celrep.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30089264
https://doi.org/10.7554/eLife.03663
http://www.ncbi.nlm.nih.gov/pubmed/25205669
https://doi.org/10.1016/j.neuron.2010.09.025
http://www.ncbi.nlm.nih.gov/pubmed/21092864
https://doi.org/10.1371/journal.pone.0013182
https://doi.org/10.1371/journal.pone.0013182
http://www.ncbi.nlm.nih.gov/pubmed/20957149
http://www.ncbi.nlm.nih.gov/pubmed/9808468
https://doi.org/10.1152/jn.1996.76.1.59
https://doi.org/10.1152/jn.1996.76.1.59
http://www.ncbi.nlm.nih.gov/pubmed/8836209
https://doi.org/10.1152/jn.2000.84.3.1414
http://www.ncbi.nlm.nih.gov/pubmed/10980014
https://doi.org/10.1007/s10827-007-0045-7
https://doi.org/10.1007/s10827-007-0045-7
http://www.ncbi.nlm.nih.gov/pubmed/17616795
https://doi.org/10.1016/j.neuron.2013.03.018
https://doi.org/10.1016/j.neuron.2013.03.018
http://www.ncbi.nlm.nih.gov/pubmed/23643935
https://doi.org/10.1038/87419
http://www.ncbi.nlm.nih.gov/pubmed/11319554
https://doi.org/10.1038/81486
http://www.ncbi.nlm.nih.gov/pubmed/11127839
https://doi.org/10.1007/s12311-014-0614-z
https://doi.org/10.1007/s12311-014-0614-z
http://www.ncbi.nlm.nih.gov/pubmed/8987766
http://www.ncbi.nlm.nih.gov/pubmed/9242612
https://doi.org/10.1371/journal.pcbi.1006298


37. Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebel-

lar nucleus. J Neurosci. 2006; 26(49):12656–63. https://doi.org/10.1523/JNEUROSCI.4023-06.2006

PMID: 17151268

38. Kassardjian CD, Tan YF, Chung JY, Heskin R, Peterson MJ, Broussard DM. The site of a motor mem-

ory shifts with consolidation. J Neurosci. 2005; 25(35):7979–85. https://doi.org/10.1523/JNEUROSCI.

2215-05.2005 PMID: 16135754

39. Anzai M, Kitazawa H, Nagao S. Effects of reversible pharmacological shutdown of cerebellar flocculus

on the memory of long-term horizontal VOR adaptation in monkeys. Neurosci Res. 2010; 68(3):191–8.

https://doi.org/10.1016/j.neures.2010.07.2038 PMID: 20674618

40. Van Alphen AM, Stahl JS, De Zeeuw CI. The dynamic characteristics of the mouse horizontal vesti-

bulo-ocular and optokinetic response. Brain Res. 2001; 890(2):296–305. PMID: 11164796

41. McKay BE, Engbers JDT, Mehaffey WH, Gordon GRJ, Molineux ML, Bains JS, et al. Climbing Fiber

Discharge Regulates Cerebellar Functions by Controlling the Intrinsic Characteristics of Purkinje Cell

Output. J Neurophysiol. 2007; 97(4):2590–604. https://doi.org/10.1152/jn.00627.2006 PMID:

17267759

42. Llinás R, Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cer-

ebellar slices. J Physiol. 1980; 305:171–95. PMID: 7441552

43. Llinás R, Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian

cerebellar slices. J Physiol. 1980; 305:197–213. PMID: 7441553

44. Grasselli G, He Q, Wan V, Adelman JP, Ohtsuki G, Hansel C. Activity-Dependent Plasticity of Spike

Pauses in Cerebellar Purkinje Cells. Cell Reports. 2016; 14(11):2546–53. https://doi.org/10.1016/j.

celrep.2016.02.054 PMID: 26972012

45. Minor LB, Goldberg JM. Vestibular-nerve inputs to the VOR a functional-ablation study in the squirrel

monkey. J Neurosci. 1991; 11(6):1636–48. PMID: 2045879

46. Williams JA, Bridgeman B, Woods T, Welch R. Global VOR gain adaptation during near fixation to

foveal targets. Hum Mov Sci. 2007; 26(6):787–95. https://doi.org/10.1016/j.humov.2007.06.002 PMID:

17870197

47. Gonshor A, Jones GM. Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of

vision. J Physiol. 1976; 256(2):381–414. PMID: 16992508

48. Mano N. Changes of simple and complex spike activity of cerebellar Purkinje cells with sleep and wak-

ing. Science. 1970; 170(3964):1325–7. PMID: 4320259

49. Marchesi GF, Strata P. Mossy and climbing fiber activity during phasic and tonic phenomena of sleep.
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LTD in cerebellar motor learning. Neuron. 2011; 70(1):43–50. https://doi.org/10.1016/j.neuron.2011.

02.044 PMID: 21482355

94. Bengtsson F, Hesslow G. Cerebellar control of the inferior olive. Cerebellum. 2006;review article:1–8.

95. Welberg L. Cerebellum: An olive branch to two theories. Nat Rev Neurosci. 2009; 10:468.

96. Kawato M, Gomi H. A computational model of four regions of the cerebellum based on FEL. Biol

Cybern. 1992; 68(2):95–103. PMID: 1486143

97. Bazzigaluppi P, R. DGJ, Van Der Giessen RS, Khosrovani S, De Zeeuw CI, De Jeu MTG. Olivary sub-

threshold oscillations and burst activity revisited Front Neural Circuits. 2012; 6(91).

98. Maruta J, Hensbroek RA, Simpson JI. Intraburst and interburst signaling by climbing fibers. J Neurosci.

2007; 27(42):11263–70. https://doi.org/10.1523/JNEUROSCI.2559-07.2007 PMID: 17942720

99. Llinas R, Welsh JP. On the cerebellum and motor learning. Curr Opin Neurobiol. 1993; 3:958–65.

PMID: 8124080

100. Placantonakis DG, Bukovsky AA, Zeng X-H, Kiem H-P, Welsh JP. Fundamental role of inferior olive

connexin 36 in muscle coherence during tremor. PNAS. 2004; 101(18):7164–9. https://doi.org/10.

1073/pnas.0400322101 PMID: 15103021

101. Keating JG, Thach WT. Nonclock behavior of inferior olive neurons. Interspike interval of Purkinje cell

complex spike discharge in the awake behaving monkey is random. J Neurophysiol. 1995; 73

(4):1329–40. https://doi.org/10.1152/jn.1995.73.4.1329 PMID: 7643151

102. Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006; 26

(22):5990–95. https://doi.org/10.1523/JNEUROSCI.0038-06.2006 PMID: 16738241

103. Liu T, Xu D, Ashe J, Bushara K. Specificity of inferior olive response to stimulus timing. J Neurophysiol.

2008; 100(3):1557–61. https://doi.org/10.1152/jn.00961.2007 PMID: 18632890

104. Wu X, Ashe J, Bushara KO. Role of olivocerebellar system in timing without awareness. PNAS. 2011;

108(33):13818–22. https://doi.org/10.1073/pnas.1104096108 PMID: 21808015

105. Gibson AR, Horn KM, Pong M. Activation of climbing fibers. Cerebellum. 2004; 3(4):212–21. https://

doi.org/10.1080/14734220410018995 PMID: 15686099

106. Kitazawa S, Wolpert DM. Rhythmicity, randomness and synchrony in climbing fiber signals. Trends

Neurosci. 2005; 28(11):611–9. https://doi.org/10.1016/j.tins.2005.09.004 PMID: 16182386

107. Llinás R, Welsh JP. On the cerebellum and motor learning. Current opinion in neurobiology. 1993; 3

(6):958–65. PMID: 8124080

108. Llinás R. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis

for motor error correction. Neurosci. 2009; 162(3):797–804.

Burst-pause Purkinje dynamics regulate motor adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006298 March 12, 2019 32 / 35

https://doi.org/10.1152/jn.1997.77.4.2115
http://www.ncbi.nlm.nih.gov/pubmed/9114259
https://doi.org/10.1162/neco.2006.18.12.2959
http://www.ncbi.nlm.nih.gov/pubmed/17052155
https://doi.org/10.1152/jn.90384.2008
https://doi.org/10.1152/jn.90384.2008
http://www.ncbi.nlm.nih.gov/pubmed/18922952
https://doi.org/10.1152/jn.00350.2012
http://www.ncbi.nlm.nih.gov/pubmed/23221414
https://doi.org/10.1016/j.neuron.2009.02.022
http://www.ncbi.nlm.nih.gov/pubmed/19376071
https://doi.org/10.1038/nn.2366
http://www.ncbi.nlm.nih.gov/pubmed/19684593
https://doi.org/10.1038/nn.4167
http://www.ncbi.nlm.nih.gov/pubmed/26551541
https://doi.org/10.1016/j.neuron.2011.02.044
https://doi.org/10.1016/j.neuron.2011.02.044
http://www.ncbi.nlm.nih.gov/pubmed/21482355
http://www.ncbi.nlm.nih.gov/pubmed/1486143
https://doi.org/10.1523/JNEUROSCI.2559-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17942720
http://www.ncbi.nlm.nih.gov/pubmed/8124080
https://doi.org/10.1073/pnas.0400322101
https://doi.org/10.1073/pnas.0400322101
http://www.ncbi.nlm.nih.gov/pubmed/15103021
https://doi.org/10.1152/jn.1995.73.4.1329
http://www.ncbi.nlm.nih.gov/pubmed/7643151
https://doi.org/10.1523/JNEUROSCI.0038-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16738241
https://doi.org/10.1152/jn.00961.2007
http://www.ncbi.nlm.nih.gov/pubmed/18632890
https://doi.org/10.1073/pnas.1104096108
http://www.ncbi.nlm.nih.gov/pubmed/21808015
https://doi.org/10.1080/14734220410018995
https://doi.org/10.1080/14734220410018995
http://www.ncbi.nlm.nih.gov/pubmed/15686099
https://doi.org/10.1016/j.tins.2005.09.004
http://www.ncbi.nlm.nih.gov/pubmed/16182386
http://www.ncbi.nlm.nih.gov/pubmed/8124080
https://doi.org/10.1371/journal.pcbi.1006298


109. De Zeeuw CI, Hoogenraad CC, Koekkoek SKE, Ruigrok TJ, Galjart N, Simpson JI. Microcircuitry and

function of the inferior olive. Trends Neurosci. 1998; 21(9):391–400. PMID: 9735947

110. Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, et al. Cerebellar LTD and
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