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Abstract This study proposes an adaptive control architec-
ture based on an accurate regression method called
Locally Weighted Projection Regression (LWPR) and on a
bio-inspired module, such as a cerebellar-like engine. This
hybrid architecture takes full advantage of the machine learn-
ing module (LWPR kernel) to abstract an optimized rep-
resentation of the sensorimotor space while the cerebellar
component integrates this to generate corrective terms in the
framework of a control task. Furthermore, we illustrate how
the use of a simple adaptive error feedback term allows to use
the proposed architecture even in the absence of an accurate
analytic reference model. The presented approach achieves
an accurate control with low gain corrective terms (for com-
pliant control schemes). We evaluate the contribution of the
different components of the proposed scheme comparing the
obtained performance with alternative approaches. Then, we
show that the presented architecture can be used for accurate
manipulation of different objects when their physical prop-
erties are not directly known by the controller. We evaluate
how the scheme scales for simulated plants of high Degrees
of Freedom (7-DOFs).
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1 Introduction

The problem of controlling a robot of many Degrees of Free-
doms (DOFs) is that of determining the forces or torques to be
developed by the joint actuators to obtain the right execution
of the commanded task (Van der Smagt et al. 1996). Tradi-
tional methods are no longer suitable for controlling the com-
plex dynamics of the new generation of light-weight robots
(Hirzinger et al. 2000; German Aerospace Center 2011) as the
movement is influenced by the state variables of all the joints
and the control becomes very complex and highly nonlinear
(Van der Smagt 1998). Nonlinearities can dominate the robot
dynamics and the feedback gains have to be increased to com-
pensate the resulting tracking error (Gomi and Kawato 1992)
for accurately following a predefined desired trajectory. This
is dangerous for the system stability and implies noncompli-
ant movements. Furthermore, high gains are unacceptable in
autonomous and biological systems as they introduce desta-
bilizing components provided the inherent feedback senso-
rimotor delays (Porrill and Dean 2007). Therefore, classic
feedback control seems to be inappropriate because high
gains result in large forces generating potentially dangerous
noncompliant movements (Nguyen-Tuong and Peters 2008),
making the robot less safe for the environment, mainly in the
framework of human-interaction applications, and compro-
mising the closed-loop stability (Jordan 1996). The major
drawback of feedback error learning according to Porrill and
Dean (2007) is that it requires complex reference structures
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for generic redundant and nonlinear systems. Some authors
attempted to avoid this problem using high gains in the feed-
back loop (Miyamura and Kimura 2002). Otherwise, (Gomi
and Kawato 1992) described a conventional feedback con-
troller, Proportional Derivative and Acceleration (PDA), for
a simple linear case, as an inverse reference model to convert
the trajectory error into motor error. Moreover, an analytic
computation of the dynamics is complex and in the case of
a large number of DOFs, precise dynamics parameters may
be unknown. In this case, adaptive models are required for
an accurate and stable control during manipulation. Here,
we address this problem using a module called Learning
Feedback (LF) controller as an inverse reference model. This
improves the system behavior and self-adapts by a learning
rule through consecutive iterations of the same trajectory.

The cerebellum plays an important role in accurate motor
learning, motor adaptation, and cognition (Ito 2000), e.g.,
computing the inverse dynamics of a body component
(Wolpert 1997; Wolpert et al. 1998), delivering feedforward
(Kawato 1990; Gomi and Kawato 1992) and feedback terms
to the crude control commands from the motor cortex. Recent
research studies (Dean et al. 2010) describe the cerebellum
as a set of adaptive modules (cerebellar microcomplexes)
encoded in the motor control system to improve coordinated
movements over time. There are even researches that spe-
cifically study how spiking cerebellar-like neural structures
can efficiently contribute in control tasks within biologically
plausible control schemes (Carrillo et al. 2008; Luque et al.
2011a,c,b). This study presents an architecture in which the
cerebellar cortex is embedded in a feedforward loop and
the basic cerebellar microcircuit is based on the Marr and
Albus’ model (Marr 1969; Albus 1971). Inspired on this
model, Albus (1975) proposed the CMAC controller capable
of learning and retrieving the motor behaviour for joint con-
trol. Feedback from sensors in the joints drives the CMAC
together with an input command that carries information
about the goal or task to be performed. More recently, also
Ito (2008) stated that a feedback controller generates a com-
mand in the motor cortex that drives the controlled body part
accordingly to the desired instruction. The cerebellum forms
and adjusts internal models that reproduce the dynamics of
the robot body through a learning process as the movement
is repeated (Ito 2008). Then, the body inherent characteris-
tics are captured in an internal model in the cerebellum to
precisely perform the control of the robot arm by referring
to it. This means that the feedback control is replaced by
the internal model that reproduces the dynamics of the robot
arm. Once the internal model is learned, it helps the brain
to perform the task precisely without referring to feedback.
The outcome is that the desired motions are predicted, and
only few correction forces are required, thus increasing the
system’s control compliance. Kawato (1990) and Wolpert
et al. (1998) proposed an architecture based on feedback

error learning (FEL) emulating the role of the cerebellar
microcircuit.

A simple cerebellar model can be seen as a single neural
network layer (Porrill et al. 2004) (Fig. 1b) where the mossy
fibers (MFs) deliver signals that are distributed over many
granule cells (GCs) whose outputs are the parallel fibers
(PFs). The information sent through the PFs arrives to the
Purkinje cells (PCs). The PC has also another input called
climbing fiber (CF) which is interpreted as a teaching signal
in the Marr and Albus’ models or in other terms, it is called the
motor error that helps one to adjust the synaptic weights using
the covariance learning rule proposed by Sejnowski (1977).
CFs enable the cerebellum to form and update internal mod-
els (based on these error-related estimates). The motor error
is the difference between the desired and the actual motor
commands. However, the correct motor command is typically
unknown; only sensory errors are available, and how to use
this information for motor learning causes the so-called distal
error problem (Dean et al. 2010). The LF controller gener-
ates adaptive feedback commands from the sensory errors
avoiding classic PID with high gains and complex reference
structures (Porrill and Dean 2007), thus addressing efficiently
the motor error problem.

It is important to remark that recent studies highlight the
importance of other elements such as interneurons for learn-
ing consolidation (Wulff et al. 2009). As input to the Purkinje
layer, we use machine learning modules (LWPR
kernels) whose adaptive input receptive fields (RFs) can be
seen as an abstraction of the granular and molecular layer
modules (including also interneurons (Wulff et al. 2009))
that efficiently and accurately deliver clean signals to the
Purkinje layer. In our approach, the cerebellar module (C)
includes only short term adaptation while consolidation of
learned primitives takes place at the machine learning module
(LWPR) as also indicated in the results and conclusions sec-
tions. There have been some applications of cerebellar mod-
els to the control of robot manipulators, all in simple systems
such as Gomi and Kawato (1992), Porrill and Dean (2007),
Haith and Vijayakumar (2009) and in real robot
systems such as Shibata and Schaal (2001).

Recent approaches treat the solution of inverse dynam-
ics (also referred to as inverse internal model) as a function
approximation problem (Nguyen-Tuong and Peters 2008;
Lonini et al. 2009). A robot arm produces a vast amount
of data (joint angles, velocities, accelerations, and torques)
during its movements, which can be used as training data
for the LWPR algorithm (Vijayakumar and Schaal 2000;
Vijayakumar et al. 2005). In this sense, machine learning
algorithms and the robot systems may help us to develop an
understanding of how motor learning takes place in biologi-
cal systems. As human motor skills are adaptive to changes
in the body’s physical morphology and the nature of the task
being performed, the biological system is able to accomplish
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compliant and precise motion. Function approximation can
solve the lack of a perfect analitycal model; however, the
learned dynamics function represents only a part of the dynamic
robot model. In fact, there are some difficulties to know
the exact model in the case of miscalibrations of the joints,
changes of context, objects under manipulation, etc; thus, the
learned function will not be able to prevent all the uncertain-
ties. For this reason, the task of the cerebellar microcircuit is
to compensate for these changes while the LWPR incremen-
tally learns the adapted dynamic models. The learned func-
tion which emulates the inverse dynamics model of the arm
together with the feedback learning module make the robot
arm capable of performing movements that are both precise
and compliant at the same time and also adaptable to chang-
ing situations. It is well-known that the human motor system
is able to generate accurate control commands under differ-
ent environment changing conditions. Wolpert et al. (1998)
proposed a modular organized structure of internal models
which can be forward and inverse models. The first type pre-
dicts the consequences of actions under different contexts
while the second one provides commands to achieve desired
trajectories. In other words, inverse internal models store a
map of the motor apparatus in terms of an inverse dynam-
ics model with a state-space representation. Accordingly,
this inverse dynamics model will provide precise command
torques over the input state-space and new trajectories are
efficiently controlled based on previously learned primitives
(Kawato 1999). As a matter of fact, we have done a general-
ization experiment to evaluate the functional structure of our
LWPR internal model. After learning the trajectories defined
in Eqs. (16) and (18), LWPR predicts accurate torques when
the robot arm has to follow a trajectory given by the sum-
mation of previous learned trajectories keeping the desired
performance. In fact, the motor commands are predicted by a
map from the state-space input composed of positions, veloc-
ities and accelerations of desired trajectory, and positions and
velocities of the computed trajectory. So, if the new trajec-
tory is closed to the known state-space, the generalization of
previous learning will work better. In practice, LWPR gen-
eralization performance (that supports our approach’s gen-
eralization capability) has already been evaluated in Schaal
et al. (2002).

Among the global nonlinear function approximators, such
as Gaussian Process Regression (GPR) (Williams and Ras-
mussen 1996), or Support Vector Regression (SVR) (Smola
and Schölkopf 2004), LWPR has been successfully used for
online incremental learning in robotic platforms (Schaal et al.
2002; Nguyen-Tuong and Peters 2008; Vijayakumar et al.
2005; Atkeson et al. 2000) as it spatially exploits localized
linear models to approximate nonlinear functions at a low
computational cost. Therefore, the evaluation of the predic-
tion value is quite fast, allowing real-time learning. Besides,
the incremental training allows the acquisition and retention

of different tasks without interferences among them (Lonini
et al. 2009). Figure 1a summarizes the basic process of LWPR
learning.

Bearing in mind Fig. 1, we exploit the similarity between
the LWPR learning mechanism and the cerebellar circuitry
to fuse their functionalities and take advantage both of the
potential of the machine learning algorithm and of the cere-
bellum’s role to make fine adjustments to the way an action
is performed. In the LWPR, the RF weighting kernels encode
the input space like the cerebellar GCs that expansively encode
the information coming from the MFs. Previous simulation
studies have widely developed the theory of the cerebellar
granular layer as a liquid state machine, where the PFs gen-
erate a finite but very long sequence of active neuron popula-
tions without recurrence (Yamazaki and Tanaka 2007). In a
similar way, RF weighting kernels could adapt their weights
to select different outputs depending on the current state of
the robot arm. Schweighofer et al. (2001) hypothesized that
the cerebellar learning is facilitated by a GC sparse code,
i.e., a neural code in which the ratio of active neurons is low
at any time. Porrill and Dean (2007) stated that both accu-
racy and learning speed could greatly improve by optimiz-
ing the choice of the centers and transforming to an optimal
basis of RFs. According to these hypotheses, we exploited
the LWPR capabilities to emulate the granular layer with a
limited number of resources. LWPR places and adapts effi-
ciently its internal kernels to better represent the input-space
with a limited number of them. In fact, unlike the cerebel-
lum, LWPR automatically evaluates the required number of
local correlation modules to optimize the network size by
incremental learning. In this sense, each LWPR module and
its associated RF weights can be seen as providing the firing
rate of a PF, while the set of active RF weights can be seen
as the current state of the granular layer-processing module
(Yamazaki and Tanaka 2007). This state would be propagated
through PFs and interneurons to produce more accurate sig-
nals at the PCs (Wulff et al. 2009). The major strength of the
LWPR is the use of incremental calculation methods during
the training, and therefore, it does not require the input data
to be stored. Furthermore, the algorithm can cope with highly
redundant and irrelevant data input dimensions without any
prior knowledge of the data, because it uses an incremental
version of the Partial Least Squares regression (PLS).

The major contribution of the presented model is that it
manages to learn different nonlinear dynamics with a hybrid
approach that uses a machine learning engine (LWPR) and a
bio-inspired module (cerebellar-like network). In other words,
we exploit the RF weighting of each local model in the LWPR
as granular and molecular layer microzones (complexes) in
the cerebellum approach. Therefore, the cerebellum module
instead of receiving inputs by means of MFs, receives pre-
processed signals from the LWPR RFs. This takes advan-
tage of the optimized engine for a compact sensorimotor
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Fig. 1 Parallelism between the LWPR processing unit and the cerebellum microcircuit

Fig. 2 Light Weight Robot
(LWR) arm and hand consisting
of seven revolute joints. The
three joints used in our
simulated 3DOF experiments
are explicitly indicated

representation provided by the LWPR. The LWPR incremen-
tally learns and stores the inverse internal model of the robot
arm, while the C module allows a faster control and a more
precise movement (Schweighofer et al. 2001). Furthermore,
this article studies how the C module infers corrective terms
when a noise (related to the inherent noise of the muscle
spindle signal and stochastic cells) is introduced in the MFs
(Schweighofer et al. 1998) or in other terms in the LWPR
inputs.

In the following paragraphs, we will present the advanta-
ges of the control architecture system. First, each block of
the proposed architecture is presented relating it to the learn-
ing rule of the LF controller and the connection between
the cerebellum and the LWPR algorithm. Second, we will
demonstrate the validity and efficiency of the model with
experiments on a 3-DOF and 7-DOF simulated Light Weight
Robot (LWR) arm (see Fig. 2). This is the third generation
of a 7-DOF robot arm designed by the Institute of Robotics
and Mechatronics at the German Aerospace Centre (DLR)
(Hirzinger et al. 2000; German Aerospace Center 2011).
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Fig. 3 Block diagram for the Adaptive Feedback Error Learning
(AFEL) scheme

2 Control architecture

In this section, the Adaptive Feedback Error Learning
(AFEL) architecture, shown in Fig. 3, is presented. It consists
of the LF controller which generates the u f b feedback joint
torques and the Unit Learning Machine (ULM) which pro-
vides the u f f feedforward joint torques. This u f f term is a
combination of an ul prediction term from the LWPR and an
uc prediction term from the cerebellum model. The trajectory
planner block computes the desired joint angles, velocities,
and accelerations (Qd , Q̇d , Q̈d) by inverse kinematics.

The field of nonlinear control theory is very large, there-
fore, we will focus our attention on a particular method called
feedforward nonlinear control (Craig 2005). Considering the
analytic robot model, we calculate the joint torques required
for a particular trajectory using the following dynamic Eq. (1)
of the robot:
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τ = M(Q)Q̈ + V (Q, Q̇) + G(Q) + F(Q, Q̇), (1)

where M(Q) is the inertia matrix of the manipulator, V (Q,

Q̇) represents the centrifugal and Coriolis terms, G(Q) is the
gravity term, F(Q, Q̇) is the model of friction, and Q, Q̇,

and Q̈ are, respectively, the obtained joint angles, velocities,
and accelerations of the robot arm.

In the architecture, the ut global torque (2) is the summa-
tion of the u f f predicted motor command which comes out
of the ULM and allows the robot to follow a desired trajec-
tory (Qd , Q̇d , Q̈d), and the u f b motor feedback command,
generated by the LF controller, which ensures the stability of
the trajectory.

ut = u f f + u f b. (2)

If the adaptive model is accurate, then the resulting u f f feed-
forward term will cancel the robot nonlinearities. However, if
the inverse dynamic model is not exact, there will be an error
between the desired signal and the output of the controlled
robot arm (Q, Q̇, Q̈). This is also called feedback error and
the LF controller output will reflect it. Then, the cerebellum
receives the signal which will activate the process of learning
(Ito 2008).

As Ito (2008) stated, the cerebellum is composed of many
modules called microcomplexes, each of which is a ULM
made up of structured neuronal circuits and it encodes an
internal model. The input–output relationship of each ULM
is adaptively modified by the CFs that convey the error sig-
nal. So, the dynamics of the robot are encoded in the ULM
which carries out the role of an internal model, as illustrated in
Fig. 3. Each microcomplex adapts the corrections for any pos-
sible miscalibration, e.g., on account of interaction torques,
by a teaching inverse reference signal or appropriate motor
command (u f b). The latter is learned by the LF controller
on consecutive iterations of the task and also assures the
stability of the system without using high gains. Once the
internal model is learned, the ULM performs the movement
precisely with a low contribution from the feedback. Inside
the ULM block, the LWPR algorithm plays the important
role of internal model, or in other words, it learns the inverse
model of the robot arm, while corrections are applied follow-
ing the trajectory. In addition to this, the ULM also consists
of a set of uniform cerebellar circuits which are capable of
learning the input–output relationship of dynamic processes
by means of the long-term depression induced in the syn-
apses between PFs and PCs. The error signal conveyed by
the CF adaptively modifies this relationship. Analogously,
this plastic site is represented by the C module—in function
rather than form—in our system, and it is quite sensitive to
the representation of the input space (Porrill and Dean 2007;
Schweighofer et al. 2001). The error signal computed by the
LF and sent to the C module is the effect of the system action
that is minimized through the Hebbian rule (13) by analogy

with the distal teacher problem formulated by Jordan and
Rumelhart (1992). Further details about the ULM are given
in Sect. 2.2.

Summarizing, the cerebellum leads the model abstraction
engine (LWPR), captures through optimized representation
the sensorimotor complexes and produces uc corresponding
torques to reduce the u f b teaching signal to the least possi-
ble amount (error related estimate). The LWPR engine incre-
mentally learns from the ut global torques by abstracting the
whole model.

2.1 Learning feedback controller

The LF controller overcomes the lack of a precise robot
arm dynamic model ensures the stability of the system, and
enables the control architecture improve its movement per-
formance. This is achieved by adding a feedback control
torque to the one which is provided by the known part of the
model. The û f br feedback torque, shown in the following
Eq. (3), is adjusted through a learning rule after consecutive
repetitions of the same task, r = 0, 1, . . . (where r indicates
the iteration number).

The dynamics of the robot can be written as

τ = M̂(Qd)Q̈d + V̂ (Qd , Q̇d) + Ĝ(Qd) + û f br . (3)

Keeping in mind the dynamic model described in Eq. (1),
considering a nonmodeled û f br friction term to be added to
the estimated terms, and substituting Eq. (3), we obtain error
Eqs. (4) and (5) of the closed loop of the control system in
Fig. 3:

ë = M−1(F − û f br ) (4)

or in a more compact form:

ë = (B − Br ), (5)

where ë = Q̈d − Q̈, B = M−1 F, Br = M−1û f br . For every
joint, the Eq. (5) becomes

ëi = (Bi − Bir ). (6)

In the last Expression (6), term Bi is constant during iterations
over time, while term Bir changes on consecutive iterations
of the task. We propose the following learning rule for each
i joint, as indicated in Expression (7):

B̂i(r+1) = B̂ir + P ∗ eir , (7)

where P∗eir is the convolution between the impulse response
filter P and the error in iteration r. Among different filters,
we chose the one given by Eq. (8):

P(s) = s2 + (Kvi − μ)s + (K pi − μ), (8)

where μ is a constant.
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P is a noncausal filter, and so it uses the errors of the
previous iterations and its convergence depends on μ. Fur-
ther specifics on the LF controller analysis are provided in
Appendix A.

2.2 Unit learning machine

As a regression algorithm, the LWPR creates N linear local
models yk for achieving the function that best describes any
set of training points (xi , yi ). The LWPR uses the inputs
(x1, x2, . . ., xm) for each local model to produce the yk sig-
nals and, by means of Eq. (9), to predict ŷ. In other words,
the total output of the network is the weighted mean of all
linear models.

ŷ =
∑N

k=1 pk yk
∑N

k=1 pk
. (9)

In the LWPR, the first site of plasticity is the measure of
the locality for each data point. This measure is obtained by
means of a kernel function as in Eq. (10), a weighting kernel
computes a weight p(k, i) for each xi data point according
to the distance from the ck center of the kernel in each k local
unit. The weight is a measure of how often an item of xi data
falls into the region of validity for each linear model. The
kernel function is defined as a Gaussian kernel:

pk = exp

(

−1

2
(xi − ck)

T Dk(xi − ck)

)

, (10)

where Dk is a positive definite matrix which is called distance
matrix.

Regarding the learning process, the number of local mod-
els increases with the complexity of the input space. If a data
sample falls into the validity region of a model, then its own
distance matrix and regression parameters will be updated;
furthermore, the update of each local model is independent
from all the other models. As mentioned before, the inverse
model is trained using a feedback error learning strategy. The
LF controller converts trajectory errors into motor commands
to be used as a training signal for the cerebellar network.

Comparing the LWPR processing unit and the cerebel-
lar microcircuit shown in Fig. 1b, we take advantage of the
LWPR kernels as granular and molecular layer microzones
(complexes) in the cerebellum approach. According to
Schweighofer et al. (2001), the function of the code in GC is
that of providing sparse codes (that are informative of the MF
inputs) to the subsequent neural layers to obtain a precise and
stable cerebellar learning. So, this is what the LWPR provides
by means of the kernels (10), it delivers a compact represen-
tation of the MF–GC synapses outputs in terms of RF filters.
Then, the LWPR uses this kernel to produce the individual
predictions yk which as a whole represent the learning of the
inverse model. Our C module is integrated with the LWPR to
reproduce the function of the cerebellum. In this regard, the

C module receives the preprocessed pk(t) signals as a bank
of filters Gk (GC outputs), defined in (11), which are driven
by the kth PFs and the interneuron contributions. Then, the
specific PF and the interneuron pathway to the Purkinje layer
carry the pk(t) signal to the PC synapse:

pk = Gk(x1, x2, . . . , xm), k = 1..N (11)

PC output z(t), defined in (12), is modeled as a weighted
linear combination of the pk(t)

z(t) =
∑

k

wk pk(t). (12)

The synaptic weights wk of the kth PF-PC synapse (see
Fig. 1b) are updated using the heterosynaptic covariance
learning rule (13) (Sejnowski 1977) in the continuous form
(Porrill and Dean 2007), and adjusted by an et teaching
or error signal (the CF). For the adaptation of the synap-
tic weights, Fujita (1982) introduced the concept of adaptive
filter in the framework of cerebellar modeling.

δwk = −βe(t)pk(t), (13)

where β is a small positive learning rate and e(t) is the error
signal carried out by the CF. In this approach, e(t) is the
feedback error torque û f br .

In order to perform an optimal function approximation,
the LWPR incrementally divides the input space into a set
of RFs defined by the center ck and a Gaussian area charac-
terized by the particular kernel width Dk, as shown in Eq.
(10). During each iteration, all RFs calculate their weight
activation to assign the new input, xi , to the closest RF and
consequently, the center and the kernel width are incremen-
tally updated. The optimized choice of centers and widths
gives an optimal basis of RFs, so that the accuracy and the
learning speed of the ULM are improved. In other words,
Eq. (11) represents the bank of Gk filters for the GCs in the
cerebellum and their response is both used to compute the
cerebellar output z(t) = uc, as defined in Eq. (12) and to
update the synaptic weights (13).

From Fig. 3, we see that the internal model within the
cerebellar cortex will retain the ut global control torque as a
target signal. Given that, Eq. (3) can now be completed:

ut = M(Qd)Q̈d + V (Qd , Q̇d) + G(Qd) + û f b + ûc. (14)

The function defined in Eq. (15) represents the nonlinear
function to be approximated by means of linear regressions,
and it depends on the desired angular position, velocity, and
acceleration, and on the real angular position and velocity of
the joints of the arm.

ul = �(Qd , Q̇d , Q̈d , Q, Q̇), (15)

where function � can be learned online and offline. Further
details about the method of learning are given in Subsect.
3.1.
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3 Simulation results

We have verified the performance of the AFEL architecture
in adapting to dynamic and kinematic changes of the con-
trolled object on two physically realistic models of the LWR
arm shown in Fig. 2. In the first setup, the LWR arm was sim-
ulated considering a reduced configuration to 3 DOFs to get
fewer input dimensions to the machine learning engine. Spe-
cifically, the first (we will refer to it as Q1), second (Q2), and
fifth joint (Q3) have been used, while the others have been
kept fixed. The three nonfixed joints used in our experiments
are indicated in Fig. 2. This reduces the amount of train-
ing data required and expedites the initial learning process.
Afterward, all the 7 DOFs of the LWR III shown in Fig. 2
were involved in the simulation, as described in Sect. 3.3. To
simulate dynamic changes, we considered that the manipu-
lated object was the last link of the arm, and so we changed
the physical properties of the tip of the arm when emulating
manipulation of different objects. Furthermore, to simulate
a kinematic modification, we changed and fixed a certain
orientation shift of the end-effector. Simulations were setup
in the Matlab robotics toolbox (Corke 1996). The task for
the experiments with the LWR arm was to follow a planned
trajectory in a 3-dimensional task space.

3.1 Control performance evaluation

The robot end-effector traced out a target trajectory shown
in Fig. 4b, defined by (16):

Q1 = Dsin(2π t),

Q2 = Dsin
(

2π t + π

4

)
,

Q3 = Dsin
(

2π t + π

2

)
, (16)

where D is a constant, and Q1, Q2, and Q3 are the joint
coordinates, respectively.

To approximate the nonlinear function described in Eq.
(14), a sequence of 16 eight-like shaped movements was sim-
ulated to collect enough target points (8000) for training.
Next, 15 iterations of the trajectory were repeated using the
learned inverse dynamic model. An analytic model of the
3-DOF LWR arm (1) generated the feedforward joint data
torques given the desired joint angles, velocities, and accel-
erations. In the training stage, the LWPR algorithm approxi-
mated Eq. (14) which contains the terms of the u f b feedback
joint torques and the uc cerebellar joint torques besides the
feedforward joint torques supplied by the analytic model.
Then, the learned inverse dynamic model defined in Eq. (14)
is tested: the analytic model is no longer used, the LWPR
module predicted the joint torques to be applied to the robot
plant, the cerebellum still optimized the execution of the tra-
jectory and the LF supervised the system, and in the mean-

while learning of the ut global torques was proceeding.The
LWPR training took place for each DOF separately (a LWPR
module for each i joint) with a training and a test set of [5 x
number of joints] inputs (desired joint angles, velocities, and
accelerations, (Qd , Q̇d , Q̈d), respectively, and the current
joint angles,and velocities, (Q, and Q̇)),respectively, and 1
target (joint torque uti of joint i) (according to Eq. (15)).
As the LWPR has learned the inverse dynamics model, the
movement is performed more precisely with a lower contri-
bution command from the feedback and from the cerebellar
circuitry. Therefore, LWPR works also as a memory consol-
idation module.

To evaluate the AFEL architecture performance, we exam-
ined how the tracking errors became compensated following
the desired trajectory (16). In order to highlight the advanta-
ges of this novel adaptive control system, we set up six dif-
ferent architectures by substituting one block of the AFEL
scheme for another, as shown in Fig. 4a. The thicker solid
line in Fig. 4a is referred to the novel AFEL architecture per-
formance (case 1). The LF controller was replaced with a
high-gain PD (case 2) and with a low-gain PD (case 3) while
the ULM module was substituted for an analytic dynamics
method called Feed-Forward (FF) module (case 4). Lastly,
both the LF controller and the adaptive ULM module were
substituted for a high-gain PD (case 5) and for a low-gain PD
(case 6). The used system accuracy measure is the normal-
ized mean squared error (nMSE) between the desired joint
angle in radians (Rad) and the actual joint angle in radians
(Rad) obtained from the robot plant. The nMSE is defined
as the MSE divided by the variance of the target data values.
From Fig. 4a, we can see that the proposed AFEL architec-
ture (case 1) achieves a very good performance with a low
standard deviation. In order to guarantee a low tracking error
in the system with a PD controller instead of the LF con-
troller (cases 2 and 5), the PD gains had to be set to high
values, which results in a potentially dangerous noncompli-
ant movement because the manipulator could damage the
environment if it comes into contact with it. As a result of
this, the maximum torque (Nm) applied by joint actuators is
too high.

Table 1 reflects this effect in terms of maximum torque ut

applied at each joint during a single trajectory. As a matter
of fact, for ULM with high-gain PD architecture (case 2), the
maximum torque gets up to 1000 Nm among the three joints,
while for the AFEL architecture, the maximum torque was
limited to around 200 Nm. To achieve the same rate of perfor-
mance as the AFEL system (see Fig. 4), gains were multiplied
by a factor of 250. Finally, by substituting the ULM mod-
ule with an analytic model (case 4), the system still achieves
good performance, but the standard deviation is higher, which
means that the error is not equally diminished for all the joints
at the same time. In other words, the cerebellum does opti-
mize the miscalibration and gets adapted to novel dynamics.
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Fig. 4 Control architecture tracking performances manipulating a 6-kg
load at the tip of the arm. Figure 4a displays normalized mean squared
error (nMSE) averaged over three joints for six different architectures
described in Subsect. 3.1. Error bars represent the standard deviation of
the mean of the nMSE of the three joints. As a result of the simulation,
Fig. 4b shows the eight-like-shaped figure (i.e., the desired and actual
trajectories before and after learning, indicated as first iteration and last

iteration relative to the left panel learning process) obtained after 15 tri-
als for the six case studies (linked with the numbers on the top-right of
the panels, referred to the control architectures indicated in Fig. 4a) in
the task space. The low-gain PD controller (cases 3 and 6) yields a very
large tracking error (therefore, the actual initial and final trajectories lay
out of the plot)

Table 1 The first column contains the values of the maximum absolute torques applied at joints in adapting to the different dynamics models for
the six different architectures

Maximum absolute RMS
Torques (Nm) Nm)

Q1 Q2 Q3 Q1 Q2 Q3

AFEL (1) 88 206 106 52 112 56
ULM with high-gain PD (2) 620 1037 908 56 119 60
ULM with low-gain PD (3) 501 812 689 56 117 60
FF with LF (4) 116 213 130 52 112 56
FF with high-gain PD (5) 477 755 642 56 115 59
FF with low-gain PD (6) 74 177 59 42 92 31

Each case has been labeled with a number which is also used in Fig. 4. However, the second column contains the quadratic mean (RMS) of torques
applied during all the iterations of the executed eight-like trajectory. Minimum absolute torques (Nm) (Q1, Q2, and Q3) were always 0 in all the
cases

During the experiment, we set the LF controller gains to very
low values for a compliant control observing the sufficient
condition provided by Nakanishi and Schaal (2004) to ensure
stability of the FEL scheme into account.

Removing the cerebellar circuitry from the ULM module
(LWPR alone), we obtain the result shown in Fig. 5, which is
compared with the performance (dashed line) of the AFEL
architecture. In both cases, the arm manipulates a 6-kg load
at the grasper. This is the demonstration of how the cerebel-
lum makes the LWPR learn an optimized inverse dynamics
model of the robot arm and makes fine adjustments to the
way the trajectory is performed. In fact, the nMSE is similar
for each joint, as indicated by the error bars.

The second used performance measure is the mean abso-
lute tracking error (MAE) in radians (Rad) defined in (17):

∣
∣Qdt − Qt

∣
∣ , (17)

which is averaged over a whole iteration. Qdt is the desired
joint angle at time t, and Qt is the actual joint angle at
time t. From Fig. 6, we can see that the absolute tracking
error decreases over the trials.

3.2 Dynamics and kinematics changes

The dynamics of the robot arm changes as the robot manip-
ulates different objects or different contexts. In this section,
four contexts are simulated by attaching objects with dif-
ferent masses at the tip of the arm. The masses are 2, 6,
8, and 10 kg, respectively. Fifteen iterations of the trajec-
tory were executed using the inverse dynamics model of
the four arm+object instantiation previously learned by the
LWPR. We ran the experiment ten times with different initial
positions around the trajectory, defined in Eq. (16), on each
trial. We computed the robot arm tip position error in the
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Fig. 5 The dashed line represents the normalized mean square error
(nMSE) averaged over three joints related to the proposed AFEL archi-
tecture. The solid line shows the tracking error performance obtained by
removing the cerebellar structure from the ULM module in the AFEL
scheme. Comparing them, we make clear that the cerebellum drives
the model abstraction engine (LWPR). In this way, the LWPR incre-
mentally abstracts the whole model. Error bars represent the standard
deviation above and below the mean of the nMSE of the three joints
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Fig. 6 AFEL architecture. Absolute tracking error, averaged over a
whole iteration, manipulating a 6 kg load at the tip of the arm

different trials and averaged it over ten times. The gains of
the LF controller have been set to the same values for the
four objects.

Comparing Fig. 7a, related to the AFEL architecture, with
Fig. 7b, related to the Feed-Forward architecture with the LF
controller, the importance of the ULM module (LWPR +
Cerebellum) becomes clear. In fact, in the second case, error
bars are larger and the nMSE becomes higher as the load
increases. However, results in Fig. 7a indicate the high qual-
ity of the estimate of the ULM output. In Table 2, we present
the maximum torque applied at joints for adaptation to differ-
ent contexts. As the load at the last joint is increased, compli-
ance is gradually achieved by gradually increasing corrective
joint torques. As mentioned before, we also tested the per-
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Fig. 7 Adaptation for the 3-DOF LWR arm using the AFEL architec-
ture (a) and the Feed-Forward architecture (b) that contains an analytical
model instead of the ULM module. Both figures show the average of
the nMSE for three joints and over ten trials. Different traces indicate
the response to different contexts. For the sake of clarity, error bars are
plotted only for the 6 kg context and indicate the standard deviation
between the trials.

formance of the AFEL architecture in adapting to kinemat-
ics changes as well. The outcome is plotted in Fig. 8, which
shows that performance is not affected either by changes in
kinematics or by changes in dynamics. In this experiment,
kinematics transformations applied at the robot plant con-
sisted of different angles of fixed rotation of the end-effector
(λ = [30, 90]).

3.3 Self-adaptive learning

Using an analytic method is not always possible to obtain
a sufficiently accurate dynamics model which is needed for
compliant robot control. In this case, it is necessary to adopt a
new strategy. The u f b feedback joint torques are given by the
LF controller to control the arm. The LWPR modules receive
their feedback command combined with its own prediction
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Table 2 The first column contains the values of the maximum absolute torques applied at joints in adapting to the different dynamics models for
the six different architectures

AFEL Maximum absolute RMS
Torques (Nm) (Nm)

Q1 Q2 Q3 Q1 Q2 Q3

2 kg 80 189 76 45 97 35
6 kg 91 206 107 52 112 56
8 kg 99 231 122 56 128 65
10 kg 109 252 133 60 142 71

Each case has been labelled with a number which is also used in Fig. 4. However, the second column contains the quadratic mean (RMS) of torques
applied during all the iterations of the executed eight-like trajectory. Minimum absolute torques (Nm) (Q1, Q2, and Q3) were always 0 in all the
cases
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Fig. 8 Robustness of the AFEL architecture under kinematics and
dynamics transformations. For the sake of clarity, only λ = 45◦, which
is representative of all values of λ tested, as kinematics transformation
is plotted. The average nMSE for three joints is averaged over ten trials.
Error bars indicate the standard deviation for ten trials

and the cerebellar output to form the feedforward motor com-
mand as a training signal. Then, in this experiment, there is
no preliminary learning from an analytic model as in the pre-
vious approach. We repeat the trajectory 16 times for each
context specified in Sect. 3.2. So, the LWPR still learns the
u f b global torque for the whole simulation while the LF
adaptively controls the trajectory execution and the cerebel-
lum optimizes the corrections. The task of this experiment is
to follow the trajectory specified in Eq. (18)

Q1 = Asin(2π t),

Q2 = Asin
(

2π t + π

4

)
,

Q3 = Acos
(

2π t + π

2

)
. (18)

In order to evaluate the relative relevance of the feed-
back contribution along the learning process, the used per-
formance measure is the ratio of torque components to the
total joint torque applied to the robot plant. Therefore, we
defined the ratios in Eqs. (19) and (20):
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(a) Contribution of correcting feedback commands Rf b com-

puted as defined in Equation (19).
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(b) Contribution of correcting cerebellar commands Rc com-

puted as defined in Equation (20).
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(c) Indirect measurement of how well the inverse dynamic

model learned by the LWPR approximates the actual dynam-

ics. Values are computed as defined in Equation (21).

Fig. 9 Ratios of individual joint torque contributions to the global
torque. Results are averaged over four trials (four contexts), and the
error bars indicate the standard deviation between the trials
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Fig. 10 Mean Absolute Error (MAE) averaged over four trials (four
contexts indicated in 2)

R f b = u f b

u f b + u f f
, (19)

Rc = uc

u f b + u f f
. (20)

Equation (19) represents the ratio of u f b feedback torque
to the ut global torque, and Eq. (20) is the ratio of uc cere-
bellar torque to the ut global torque.

Figures 9a and 9b show how the average values (within
each iteration) of these ratios evolve along the learning pro-
cess. If the learned inverse model is accurate, then the ratios
will be small as the error-correcting torque decreases over
consecutive iterations. At the beginning of the simulation,
the amount of ratio R f b is higher than Rc, which means that
the LF controller output contributes more to the global torque
than the cerebellar torque and decreases significantly accord-
ing to the reduction of errors. However, the second ratio, Rc,

depends on the LWPR learning performance because they
are connected by the RF weights of the LWPR local mod-
els which are the cerebellar granular weighting kernels. As
a matter of fact, Rc decreases (see Fig. 9b) as the LWPR
incorporates u f b and uc to its global output torque during
the learning process.

Figure 9c shows the ratio of the LWPR torque ul to the
global torque ut , as defined in Eq. (21):

Rl = ul

u f b + u f f
. (21)

We can see that the LWPR algorithm progressively learns
the ut global torque and therefore it really acts as internal
model for the inverse dynamics of the robot arm.

In short, the more accurate the learned model is, the finer
will be the contribution of the cerebellum, because the LWPR
optimally allocates the RFs for an efficient input mapping.
In any case, both torque correction quantities, u f b and uc,

vary depending on the nature of the system and on the error
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Fig. 11 Averaged nMSE over three joints. Error bars represent the
standard deviation above and below the mean of the nMSE of the three
joints. The thicker solid line is related to the proposed AFEL architec-
ture, while the other is related to the AFEL architecture without the
cerebellar structure in the ULM module. Comparing them, we notice
that the cerebellum optimizes the tracking error performance and drives
the joints to a better and faster convergence

because of miscalibrations, contexts, noise, etc. In all cases,
the u f b feedback component and the uc cerebellar torque
will decrease as the LWPR incorporates their contributions
in its internal model as a memory consolidation process. Fur-
thermore, as displayed in Fig. 10, the tracking absolute error
is very low and with low variance between trials (contexts).
Again, the fact that the error slopes down is a result of the
control stability provided by the LF controller and of the
cerebellar optimization that improved the dynamic inverse
model to be learned. Comparing Figs. 6 and 10, we find
that the performances are similar, which means that the self-
adaptive learning works, and it is of high interest in case of
unavailability of an analytic dynamics model. In addition, we
can say that the cerebellum not only drives the LWPR learn-
ing engine to acquire an optimized internal model, but also
contributes to deliver finer and more effective corrections for
all contexts. For this purpose, we compare the performances
of the proposed AFEL system with an identical one in which
the ULM module does not contain the cerebellar microcir-
cuit. Results are plotted in Fig. 11.

Finally, we have verified that the self-adaptive learning
works efficiently on a more complex robotic platform too.
For this purpose, we have repeated the same experiment for
the 7-DOF LWR arm, measuring the outcome performance
in terms of nMSE and computing the ratios described in Eqs.
(19), (20), and (21). The eight-like-shaped target trajectory
to be followed by the arm tip is defined in Eq. (22):
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Fig. 12 nMSE averaged over four trials (four contexts indicated in 2).
The thicker, darker line is the average over the 7 joints

y = 0.15sin(2t),

z = 0.6 + 0.2cos(t), (22)

and the variable x is a constant.

Results in Fig. 12 indicate that the AFEL architecture also
works for high DOFs. The nMSE is low and after five iter-
ations, the system’s behavior becomes stable. The LWPR
has approximated the dynamics model of the LWR arm well
achieving high accuracy. Figures 13a and 13b shows the
ratios of each individual component torque, u f b and uc,

with respect to the global joint torque, ut , while Fig. 13c
reveals that the LWPR output increases according to its grad-
ual learning of the global torque, ut .

The behavior of the AFEL scheme has been studied in a
noisy scenario by using uniform and Gaussian additive noise
in the inputs of the system (at the inputs of the LWPR learn-
ing engine) as represented in Figures 14 and 15 related to
the 3DOFs and 7DOFs configurations, respectively. Noise
causes a deviation in the actual trajectory. In the framework
of a biological system, it seems that the cerebellar circuitry
helps to reduce the noise introduced in the MFs (which are
highly stochastic) facilitating learning in the molecular and
Purkinje layer (Philipona and Coenen 2004). Both Figures 14
and 15 show the nMSE evolution obtained when the robot
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(a) Contribution of correcting feedback commands R f b

computed as defined in Equation (19).
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(b) Contribution of correcting cerebellar commands Rc

computed as defined in Equation (20).
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Fig. 13 Ratios of individual torque contributions to the ut global torque. Results are averaged over the four trials (four contexts), and the error
bars indicate the standard deviation between the trials
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Fig. 14 Accuracy evolution of the AFEL architecture on a 3-DOF con-
figuration when introducing a uniform noise (a) and a Gaussian noise
(b) on input signals to the system. Graphs represent the averaged nMSE

in radians over three joints of the robot loaded with a 10-kg weight dur-
ing the learning process of the eight-like-shaped trajectory execution.
The zoom in the nMSE axis highlights the difference between curves
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Fig. 15 Accuracy evolution of the AFEL architecture on a 7DOFs con-
figuration when introducing a uniform noise (a) and a Gaussian noise
(b) on input signals to the system. Graphs represent the averaged nMSE

in radians over seven joints of the robot loaded with a 10-kg weight dur-
ing the learning process of the eight-like-shaped trajectory execution.
The zoom in the nMSE axis highlights the difference between curves

end effector was loaded with 10 kg to increase the inertia,
and the added noise was set to 16 dB using a uniform (a)
and Gaussian distribution (b), respectively. As a result of
this, the AFEL architecture remains stable against this input
noise when the C module is embedded in it, while the LWPR
alone does not accomplish the joint convergence and the sta-
bility. In fact, the cerebellar output allows a good precision,
and joint error remains delimited around mean values (i.e.,
smaller standard deviation).

More importantly, the results obtained in this study indi-
cate that the AFEL scheme (including a cerebellar module
in the ULM) is scalable in terms of number of joints. For
the 7-DOF LWR arm, we obtained good results in terms
of error, just as for the 3-DOF case. However, it should be
noted that the dynamics of a real system will significantly
be more complicated than the simulated dynamics, as there

are important nonlinear effects that are not simulated, such
as actuator dynamics or elasticity. Furthermore, as already
indicated by other authors, it has been shown that learning
of dynamics using LWPR on real-world high DOF robotic
platforms works very efficiently (Vijayakumar et al. 2005).

4 Conclusions

We implemented a model for the motor control of robotic
arm movements in which machine learning and biologically
inspired approaches co-exist and complement each other.
The presented Adaptive Feedback Error Learning scheme
(AFEL), which takes advantage of the connection between
the accurate regression method LWPR and a basic cerebel-
lar structure, works properly. Furthermore, the cerebellar
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module takes full advantage of the LWPR for efficiently
abstracting the high dimensional input space.

A potential role of the granular and molecular layers in
biologically plausible cerebellar models is to provide accu-
rate signals to the PCs for improving the learning of the
current model. These signals seem to influence the DCN
synapses capability to consolidate the learning (Wulff et al.
2009; Attwell et al. 2002; Boyden et al. 2004). In our model,
the input LWPR RFs are used as a representation of the gran-
ular and molecular layers delivering clean and accurate sig-
nals to the Purkinje layer. Therefore, LWPR provides optimal
input representation to the Purkinje layer in terms of neural
resources (it adapts its neural resources incrementally and
according to the input data structure). The importance of this
efficient and clean contribution has been evaluated recently
(Wulff et al. 2009; Honda et al. 2010) and other authors, such
as (Schweighofer et al. 2001) and (Porrill and Dean 2007)
hypothesized that the cerebellar learning is facilitated by opti-
mizing the choice of the centers and the basis of RFs at the
granular layer. As a matter of fact, LWPR creates around 60
locally linear models for the 7-DOF robot arm, and it allows
for the selection of only predictions from those who elicit
great activation for a query point.

It is also important to note that the LWPR also works as
a memory consolidation module. Therefore, the cerebellar
module with its learning rule is focused on short-term adap-
tation, while long-term memory consolidation takes place at
the LWPR module. Thus, in terms of short/long-term lear-
nings by analogy with biological systems, our cerebellar
module, receiving inputs from the LWPR RFs, represents the
MF-GrC/interneurons-PC pathway for short-term learning,
while the LWPR adaptation kernels represent the
MF-DCN adaptive pathway which is responsible of long-
term learning (memory consolidation) (Wulff et al. 2009;
Masuda and Amari 2008).

We exploited the LWPR characteristics to acquire the
dynamics of a robot arm through the learning process as the
movement is repeated. Once the inverse model is learned,
the system can perform the task precisely, and few correc-
tion forces are required, thus increasing the compliance. In
order to achieve compliant movements and ensure the system
stability, high feedback gains must be avoided, specially in
biological systems (or robotic platforms in human machine
interaction tasks). To avoid this, we propose the LF controller,
which adapts the error-correcting feedback over consecutive
iterations of the same task. The LF controller supplies the
error to the cerebellar network. Furthermore, the LF con-
troller will accurately guide the LWPR during the learning
process using very low gains. Results show that the global
architecture has a compliant performance which is suitable
for robotic systems in human environments. Haddadin et al.
(2007) evaluated the influence of the mass and velocity of
DLR-LWRIII in resulting injuries on human bodies. Their

impact tests were carried out using the Head Injury Criterion
(HIC) as it is the most prominent indicator of head injury in
automobile crash-testing; the results of this test suggest that a
robot, even with arbitrary mass moving not much faster than 2
m/s is not able to become dangerous to a nonclamped human
head with respect to typical severity indices. In addition to
this, their investigation revealed that the inertia properties of
the LWRIII allow an impact velocity of up to 1 m/s with-
out leading to soft-tissue injuries. With regard to our system,
because the linear velocity is the cross-product between the
angular velocity and the position of the end-effector with
respect to origin, we have considered the worst case, i.e., the
longest link and the maximum angular velocity, to simplify
the computation. The maximum linear velocity obtained dur-
ing the self-adaptive experiment for the 3-DOF LWR arm
manipulating a 10-kg load at the last joint is 0.62 m/s, and
therefore the system performs in a compliant manner.

The performance obtained by the AFEL scheme in terms
of error after learning is remarkable compared to other
approaches (Nguyen-Tuong and Peters 2008; Lonini et al.
2009). This is of high interest taking also into account that in
this architecture, the LWPR does not require an analytic pre-
liminary dynamic model to learn from it, as it learns directly
from the feedback torques and the cerebellar compensatory
torques. As a matter of fact, LWPR works as an internal
model abstraction kernel whose learning process is guided
by the LF instead of having a reference analytic model.

Porrill and Dean (2007) mentioned the motor error prob-
lem due to the complexity on the reference structures used
to compute the error for the forward connectivity. This prob-
lem particularly affects biological nonlinear motor systems
as the number of the reference structures is multiplicative in
the dimension of the control and sensor space. In our feed-
back error learning approach, we addressed the motor error
problem using the LF controller, we proved its performance
in the task of a simulated 3 and 7-DOF robot arm. We showed
that the combination of feedback and feedforward estimates
does offer considerable advantages for robust online con-
trol. Furthermore, we ensured accuracy and enhanced the
speed of learning by optimizing the choice of the centers and
transforming to an optimal basis of RFs through the LWPR
algorithm.

Schweighofer et al. (2001) proposed a diagram of the
model of cerebellar control two-joint arm movements in
which the cerebellum learns how to compensate for interac-
tion torques that occur during reaching movements. In anal-
ogy with their approach, in our control system, there are
three motor commands: feedforward motor commands (by
the forward internal model), feedback torques (by the LF
controller), and the cerebellar compensatory torques (by the
C module) which are summed and sent to the robot arm plant.
The cerebellar torque values are necessary for precise control
and the cerebellar network is embedded in the control model.
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In fact, the comparison between two cases, including and not
including the C module in the system, shown in Figures 14
and 15, respectively, makes clear the important role of the
cerebellar C module achieving high robustness against noise.
Owing to the large number of DOFs and the pervasive nonlin-
earities of the seven degrees of freedom human arm, an inter-
nal model of the arm’s dynamics is an extremely complex
mapping between kinematic and dynamic variables, and thus
requires a large number of encoding states (Schweighofer
et al. 2001). Despite this, we demonstrated that we achieved
very good performances with a small number of states (or
GCs) for a 7-DOF robot arm.

In conclusion, to the best of our knowledge, the presented
AFEL model provides significant advantages for adaptive
motor control. AFEL uses constrained torques, which makes
the approach appropriate for compliant movements. It pro-
vides highly accurate movement capabilities (even in the
presence of disturbances of the initial dynamics and kine-
matics of the “robot+object” plant), i.e., low errors for all
joints, even similar to other approaches using control strat-
egies based on high gains. It achieves even better results in
plants of high DOFs, and all the joints converge faster to
the minimum error. Finally, AFEL uses an adaptive learning
module to feed the LWPR component, making this approach
useful even for robotic plants for which the analytic dynamics
or kinematics are only roughly known. This hybrid scheme
based on a machine learning engine (LWPR) and a bio-
inspired component (cerebellar module) efficiently uses the
LWPR component to optimize the input space representa-
tion and also efficiently uses the cerebellar-like structure to
integrate different input-driven contributions for obtaining
accurate corrective commands.
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Appendix: LF controller details

Substituting the Laplace transform of Eq. (6) in the Laplace
transform of Eq. (7), we obtain Eq. (23):

B̂i(k+1)(s) = B̂ik(s) + P(s)H(s)[Bi (s) − B̂ik(s)], (23)

where

H(s) = 1

s2 + Kvi (s) + K pi
. (24)

Substituting the following Eq. (25) in Eq. (23)

G(s) = 1 − P(s)H(s), (25)

we obtain Eq. (26)

B̂i(k+1)(s) = G(s)B̂ik(s) + B̂(s)[1 − G(s)]. (26)

Starting with Di0, after k iterations we will get Eq. (27):

B̂ik(s) = Bi (s) + AGk(s), (27)

where A is a constant. The convergence of the learning algo-
rithm depends on the factor Gk(s) in Eq. (27); The con-
vergence will occur if Gk(s) approaches zero. In this case,
B̂ik(s) → Bi (s), and Expression (5) will be true with its right
expression equal to zero. The inverse Laplace transform of
Gk(s) is defined by Eq. (28)

gk(t) = L−1[Gk(s)]. (28)

If we choose an appropriate filter P(s), (8), then we would
obtain

limk→∞ |hk(t)| = 0, (29)

with which the convergence is guaranteed.
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