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In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent
loop which avoids dealing with the motor error or distal error problem. The presented approach learns
the motor control based on available sensor error estimates (position, velocity, and acceleration) without
explicitly knowing the motor errors. The paper focuses on how to decompose the input into different com-
ponents in order to facilitate the learning process using an automatic incremental learning model (locally
weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the
robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent
adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compli-
ant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates
a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-
LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales
for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm
of the new generation of light weight robots (LWRs).

Keywords: Light weight robot; recurrent control architecture; locally weighted projection regression;
adaptive learning.
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1. Introduction

In this paper, we integrate different elements into
an approach for adaptive and predictive control
in manipulation tasks. In biological systems, the
cerebellum seems to play a key role in perform-
ing accurate and coordinated movements. It is
involved in the control of actions and in the acqui-
sition of specific motor skills.1–3 The behavior of
the cerebellum has been commonly emulated in a
feed-forward control architecture by artificial neural
networks (ANNs)4 based on feedback error learn-
ing (FEL), where it delivers feed-forward correc-
tive terms to the crude commands from the motor
cortex5–8 and the teaching signal is computed by
the difference between actual and correct/desired
motor commands, that is the motor error. Nev-
ertheless, the correct motor command is typically
unknown; only sensory errors are available, and the
way to use this information for motor learning repre-
sents the so-called distal error problem.9 Porrill and
Dean stated in Ref. 10 that this kind of approach
requires complex neural structures to estimate the
motor error; thus they advocated using the recur-
rent control architecture. In fact, unlike in the feed-
forward approach, the recurrent control architecture
uses sensory-based teaching signals for adaptively
adjusting the cerebellar weights.11 These signals are
physically available signals10,12 and represent sen-
sory mismatch between the desired and actual move-
ment. Therefore, this configuration avoids the distal
error problem.

Evidence from neurophysiology and computa-
tional studies support that, in the cerebellar cortex,
two different types of internal models are allo-
cated.13–15 They are the inverse and forward models
which are adjusted over time with supervised learn-
ing to facilitate precise coordinated movements12 and
to increase the system’s control compliance.16 The
inverse internal model reproduces the inverse dynam-
ics model of a body part,15 i.e. for a desired motion
described in joint-coordinates, it produces the motor
command in terms of torques to be applied. The
second one (forward model) reproduces the for-
ward dynamics; in this way, for example, it pre-
dicts the next state of the arms (given both the
current state and the applied torque values) and
plays an important role in arm control.9,17 Miall and
Wolpert suggested in Ref. 18 that forward models are
employed by the sensory-motor system to predict the

consequences of movements based on the efference
copy of the motor command and the current state of
the body.

Porrill and Dean in Ref. 10 modeled the cere-
bellum as a set of complex adaptive filters in which
the decomposition of the input into different compo-
nents takes place at the granular layer. They argued
that the choice of an appropriate basis (for these
adaptive filters) significantly affects both the learn-
ing speed and the accuracy. In our approach, we
adopt a recurrent adaptive control architecture, in
which the cerebellar module delivers corrective terms
in the sensory space. We simulate the cerebellar mod-
ule as a single neural layer (abstracting the Purkinje
cell (PC) layer) that adapts its weights using the
covariance learning rule.19 This single neural layer
performs a weighted sum of inputs from adaptive fil-
ters which abstract a rich representation of the input
sensory-motor space. Instead of building a granu-
lar layer for these adaptive filters, we make use of
the local weight projection regression (LWPR) algo-
rithm20,21 that internally builds up a set of filters
to acquire a compact and optimized representation
of the input. Furthermore, the LWPR module plays
the role of a forward model that delivers sensory esti-
mates (predictive sensory consequences of the motor
commands).

LWPR has already been used for online incre-
mental learning in robotic platforms,21–24 since it
exploits spatially localized linear models to approx-
imate nonlinear functions at a low computational
cost. The evaluation of the prediction value is rather
fast, allowing real-time learning. Furthermore, the
incremental training of the LWPR allows the acqui-
sition and retention of new models along the life-
long use of the robot. The major strength of the
LWPR is that it can cope with highly redundant and
irrelevant data input dimensions, without any prior
knowledge of the data. This is so because it uses
an incremental version of the partial least squares
regression (PLS). On the other hand, Gaussian pro-
cess regression (GPR)25 or support vector regres-
sion (SVR)26,27 have the advantage of not depending
on many parameters and they are, therefore, easier
to tune.28 A revision of different regression meth-
ods for robotics can be found in Ref. 28. LWPR
has been convincingly applied to model kinematics
and dynamics (forward and inverse) of large mechan-
ical systems.28 In particular, considering the forward
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dynamic model learning case, LWPR has been used
to learn the forward dynamic model of a two DOFs
plant robot.29

With regard to the control, we use a simulated
model of a robot arm of the new generation of light
weight robots (LWRs)30,31 whose major drawback
is that its complex dynamics are difficult to con-
trol with traditional methods, since the movement
is affected by the state variables of all the joints
and control becomes very complex and highly nonlin-
ear.32 Using a simple linear control, these nonlinear-
ities can be compensated using high gains to reduce
the gap between the desired trajectory and the actual
trajectory, but they introduce large forces generating
potentially dangerous noncompliant movements.24

In order to prevent high gains, we use an adaptive
feedback (AF) controller, which transforms the tra-
jectory error (in sensory coordinates) into a motor
command. It self-adapts by a learning rule through
consecutive iterations of the same trajectory. In fact,
the learnt adapted dynamic arm model (constituted
by the LWPR and cerebellar modules) together with
the AF controller allows the presented scheme to
preform precise and compliant movements even in
changing scenarios (for instance, when manipulating
different objects).

In the following sections, we will present the
advantages of our approach. In the first section, we
will describe the recurrent adaptive feedback error
learning (RAFEL) control scheme presented in this
work, showing its connections and system equations.
Then, we will discuss the properties or characteristics
of the forward model learning algorithm (LWPR),
the cerebellar microcircuit, and how they are inte-
grated in the RAFEL approach. Finally, we will
demonstrate the performance of the presented model
with experiments on a 3-DOF and a 7-DOF simu-
lated LWR arm.

2. Control System Architecture

The RAFEL block diagram is shown in Fig. 1. The
Trajectory planner delivers desired state terms and
their derivatives (Qd, Q̇d, Q̈d), where d stands for
desired. The difference between desired terms (Qd,
Q̇d, Q̈d) and actual plant state (Q, Q̇, Q̈) deliv-
ered through the sensory feedback (upper pathway in
Fig. 1) is used as error estimates (ep, ev, ea, stating
for error in position, in velocity, and in acceleration,
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Fig. 1. Block diagram for the RAFEL architecture.
Dynamics are encoded in the forward model unit. This
unit predicts the next state from the current state of
the robot arm and the efference copy or motor command
u. The cerebellum module (block C), instead of receiv-
ing inputs by means of mossy fibers (MFs), receives pre-
processed signals from the LWPR receptive filters (RFs)
(pk) and computes corrections (Qc, Q̇c, Q̈c) to be added
to desired positions, velocities, and accelerations (Qd,
Q̇d, Q̈d) (Learning stage). Then, sensory feedback (Q,

Q̇, Q̈) (i.e. actual position, velocity, and acceleration) is
subtracted from the desired terms and the result is sent
to the AF controller that generates the motor torque u
assuring the stability of the system without using high
gains (adaptive stage).

respectively) by the cerebellar module (C) for its
internal adaptation learning rule. This cerebellar
module delivers corrective terms (Qc, Q̇c, Q̈c) in sen-
sory space, to be added to the desired terms (from
the planner) and sent towards the plant. The AF con-
troller translates final position, velocity, and accel-
eration contributions into motor commands. These
final torque values (u) are sent to the plant and
also (as efferent copy) to the forward internal model
(LWPR) of the arm. This forward internal model,
implemented with the LWPR, delivers the activity of
the pk filters to the cerebellar module. The cerebellar
module takes them as an optimized representation of
the plant state. The cerebellar module uses pk kernel
activity as a compact sensory-motor representation.
This is the activity that a cerebellum model would
have at the granular layer. Besides the cerebellar-
based loop, the AF controller contributes to mini-
mize the error, reducing the difference between the
sensory feedback and the desired terms (Qd) on an
inner closed loop.

1350010-3

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

13
.2

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
02

/2
1/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



1st Reading

March 20, 2013 14:4 1350010

S. Tolu et al.

Command torques (u) are computed by the AF
controller from the global errors (epg, evg, eag), where
g stands for global, according to Eq. (1)

u = M̂(Qdc)[eag + Kvevg + Kpepg + B̂r], (1)

where M̂ is the parametric inertia matrix of the
LWR and B̂r represents the approximated friction
force. The derivation of this equation is detailed in
Subsec. 2.1. The global errors are obtained accord-
ing to (2) by summing feedback errors (ep, ev, ea)
and sensory corrective terms (Qc, Q̇c, Q̈c) which
are produced by the simplified cerebellar microcir-
cuit explained in Subsec. 2.2. These terms are called
sensorial contribution since they are represented in
the sensory space (not in terms of torques).

(epg, evg, eag) = (Qd, Q̇d, Q̈d) − (Q, Q̇, Q̈)

+ (Qc, Q̇c, Q̈c). (2)

The cerebellar module produces sensory corrective
terms (Qc, Q̇c, Q̈c)=C(pk, ep, ev, ea), which are cor-
rections in position, velocity, and acceleration that
are estimated by using the kernel activity (pk)
provided by the LWPR module as described in
Subsec. 2.2.

As indicated before, the cerebellar circuitry
applies corrections for the miscalibration of the sys-
tem adjusting its weights and taking into account
the feedback errors (ep, ev, ea) as described in Sub-
sec. 2.2. From a biological point of view, block C
in Fig. 1 consists of a set of uniform cerebellar cir-
cuits (single neural layer) which are capable of learn-
ing. This layer adaptively modifies its input-output
characteristic function in order to reduce the sen-
sory errors (ep, ev, ea). Further details about C are
given in Subsec. 2.2. In our approach, the LWPR
algorithm is implemented to play the important role
of the forward model, which means that it learns
the direct dynamic model of the robot arm. The
machine learning engine (LWPR) and the cerebel-
lar cortical circuitry (C) complement each other; the
former takes advantage of the adaptive cerebellar
corrections through the efference copy and the lat-
ter, of the efficient reduction of the high dimensional
input dimensions, of the incremental learning, and of
a compact sensory-motor representation provided by
the bank of filters pk of the LWPR.

The field of nonlinear control theory is very
large; we will focus on a particular method called
adaptive computed torque control.33 Considering

the analytical robot model, we calculate the joint
torques required for a particular trajectory using the
dynamic expression of the robot (3):

u = M(Q)Q̈ + V (Q, Q̇) + G(Q) + F (Q, Q̇), (3)

where M(Q) is the inertia matrix of the manipu-
lator, V (Q, Q̇) represents the centrifugal and corio-
lis terms, G(Q) is the gravity term, F (Q, Q̇) is the
model of friction, and Q, Q̇, Q̈ are the joint angles,
velocities, and accelerations of the robot arm. In the
architecture, the u joint torque values generated by
the AF controller allow the robot to follow a desired
trajectory (Qd, Q̇d, Q̈d) and ensure the stability of
the trajectory at the same time. The specifics and
equations of the AF controller are presented in Sub-
sec. 2.1.

When the cerebellar output is accurate and
the forward dynamic model is exact, the AF con-
troller will cancel the nonlinearities, transforming the
resulting global errors (epg, evg, eag) into the cor-
rect torque u. Nevertheless, there may be a differ-
ence between the desired state and the actual output
of the controlled arm; for instance, due to a heavy
object being manipulated (affecting the dynamics of
the plant+object model) that will activate the cere-
bellar process of learning.15

Summarizing, the cerebellum elaborates the
sensory-motor complexes that it receives from the
optimized representation provided by the LWPR and
produces the sensory corrective terms (Qc, Q̇c, Q̈c),
which, added to feedback errors, enable the AF con-
troller to adapt the u motor commands. The LWPR
engine incrementally learns from the u torque values
and the current state of the robot arm (Q, Q̇)(t−1)

(see Fig. 1) and abstracts the whole forward dynamic
model.

2.1. AF controller

In this subsection, we address the problem of con-
trolling a robot arm of many DOFs. Taking into
account the fact that an analytical computation of
the robot dynamics is complex and a large num-
ber of parameters may be unknown, we implement
an adaptive model for an accurate and stable con-
trol during object manipulation: the AF controller.
The AF controller ensures the stability of the sys-
tem producing the appropriate joint torque values
to obtain the right execution of the desired trajec-
tory in a compliant way. From Eq. (4), it can be
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noticed that feedback joint torque ur varies after con-
secutive repetitions of the same trajectory according
to the gradual dynamic acquisition process (forward
dynamic module) of the moving arm when executing
a manipulation task, r = 0, 1, . . . (r stands for the
iteration number).

u = M̂(Qdc)Q̈dc + V̂ (Qdc, Q̇dc)

+ Ĝ(Qdc) + ûr, (4)

where (Qdc, Q̇dc, Q̈dc) = (Qd, Q̇d, Q̈d)+ (Qc, Q̇c, Q̈c).
M̂ , V̂ , and Ĝ represent the parametric values of the
LWR (see Appendix B). According to the adaptive
computed torque theory, we rewrite (4), obtaining
Eq. (5).

u = M̂(Qdc)τp + τc, (5)

where τp = Q̈dc+Kvė+Kpe, and τc = V̂ (Qdc, Q̇dc)+
Ĝ(Qdc)+ûr. Substituting (5) in (3), we obtain (6) the
closed loop control of the system in Fig. 1 (adaptive
stage).

ë + Kv ė + Kpe = M̂−1[(M − M̂)Q̈ + (V − V̂ )

+ (G − Ĝ) + (F − ûr)]. (6)

It has been demonstrated that a simple
proportional-derivative control is able to ensure sta-
bility34 in traditional manipulators. However, the
friction term is crucial in controlling LWR arms (as
is our case) with high-ratio gear boxes. In this case,
there are no conventional existing methodologies to
control these robots without a massive modeling.35

In order to ensure stability in our system we aim at
compensating the friction forces, therefore, Eq. (6)
becomes Eq. (7) where the term ûr is a nonmodeled
friction term added to the other estimated terms.
This accounts for the dynamic model which is not
well-known or not precise.

ë + Kv ė + Kpe = M̂−1(F − ûr), (7)

or in a more compact form:

ë + Kvė + Kpe = B − Br, (8)

where ë = (Q̈dc− Q̈), B = M̂−1F , Br = M̂−1ûr. For
every joint, Eq. (8) becomes:

ëi + Kviėi + Kpiei = Bi − Bir . (9)

In the last expression (9), term Bi is constant during
iterations over time, while term Bir changes on con-
secutive iterations of the task. We choose the learning

rule (10) for each joint i:

B̂i(r+1) = B̂ir + ω ∗ eir, (10)

where ω ∗ eir is the convolution between the impulse
response filter ω and the error in iteration r.

We choose the specific filter defined by the
Laplace transform in Eq. (11):

Ω(s) = s2 + (Kvi − µ)s + (Kpi − µ), (11)

where µ, Kpi, and Kvi are constants. AF controller
gains (Kpi, Kvi) have been set to very low values
for a compliant control taking into account the suffi-
cient condition provided by Nakanishi and Schaal in
Ref. 36 in order to ensure the stability of the adopted
FEL scheme.

Ω is a noncausal filter, so it uses the errors of the
previous iterations and its convergence depends on µ.
It is worth noting that symbolisms for error values
used in this subsection have been slightly modified
(ë = eag, ė = evg, e = epg) in order to make the
paragraph easier to follow. Further specifics on the
AF controller analysis are provided in Appendix A.
As indicated in this appendix, the choice of the filter
guarantees learning convergence.

2.2. The role of the forward internal
model in the cerebellum

LWPR works, in the presented architecture, as a
model abstraction engine capable of learning the
forward dynamic model of the controlled robot
arm+object (the object being manipulated).

LWPR is an algorithm for nonlinear function
approximation in high dimensional spaces with
redundant and irrelevant input dimensions. In order
to perform an optimal function approximation,
LWPR incrementally divides the input space into a
set of K RFs defined by the center ck and a Gaus-
sian area characterized by the particular kernel width
Dk

21 as shown in Eq. (12). Figure 2 represents its
processing unit where N inputs enter into K linear
local models (these local kernels are incrementally
created and allocated).

For each data point xi, a weight p(k, i) (i =
1, . . . , N , k = 1, . . . , K, N number of inputs, K num-
ber of linear local models) is computed inside each
local unit k to measure the input locality accord-
ing to the distance from the center ck of the kernel.
In other words, the weight measures how often an
item of data xi falls into the region of validity of
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kyk
p

Fig. 2. Schematic layout of the LWPR learning
mechanism.

each linear model. The kernel function is defined as
a Gaussian kernel:

pk = exp
(
−1

2
(xi − ck)T Dk(xi − ck)

)
, (12)

where Dk is called distance matrix and defines the
size and shape of the validity region of the linear
local model k.

Every time a data sample falls into the valid-
ity region of the local model, its distance matrix
and regression parameters are updated. This hap-
pens independently for each model. In fact, every
model makes its own prediction and the combination
of all individual predictions yk is the total output ŷ

(see Eq. (13)) of the LWPR network. In other words,
the LWPR prediction is the weighted mean of all lin-
ear models:

ŷ =
∑K

k=1 pkyk∑K
k=1 pk

. (13)

Forward models predict the next state of each
joint (e.g. position, velocity, and acceleration) given
the current state and the efference copy.7,37,38 As a
result, LWPR input data consist of torques, current
positions, and velocities of all the joints, while the
output data are the predictions of the outgoing posi-
tions, velocities, and accelerations. In a more detailed
way, the LWPR training takes place for each DOF
separately. We set up [3 × number of joints] mod-
ules, with a test set of [3 × number of joints] inputs
(torques, current positions, current velocities) and 1
target. Each LWPR module retains either the next

joint position, the next joint velocity, or the next
joint acceleration as target signal. The learning goal
is to make prediction errors converge to zero, thus
providing an optimized representation of the sensory-
motor complexes to the cerebellum module.

In our scheme, the cerebellar module (C) takes
full advantage of the optimized internal models being
continuously updated at the LWPR. In the cerebel-
lum, information coming from the MFs is expan-
sively distributed over many granule cells (GCs) to
produce a sparse representation on the parallel fibers
(PFs) reaching the PCs. Our cerebellar module only
includes this single layer of PCs, that receive an opti-
mized input representation directly from the LWPR
(which delivers the activity of its kernels pk to this
Purkinje layer). Therefore kernels pk play here the
role of the MFs→GCs layers. As mentioned before,
LWPR optimizes the network size by encoding the
input space through the RF kernels. In our set up,
the input space (variables x) are joint torque values,
current positions, and current velocities. Then, RF
kernel functions can be thought as a bank of filters
Gk defined in Eq. (14), and the output signals pk

are driven by the PFs and interneurons (by analogy
with the cerebellum) to the PCs (explicitly included
in our C module).

pk = Gk(x1, x2, . . . , xi), k = 1, . . . , K,

i = 1, . . . , N. (14)

Then, we take advantage of the LWPR local ker-
nels acting as different granular and molecular layer
microzones in the cerebellum model, thus allowing us
to obtain a compact sensory-motor representation.

PCs output (which is the cerebellar module
output) zk(t), defined in (15), is modeled as a
weighted linear combination of the pk(t) computed
by Eq. (14):

zk(t) =
∑

k

wkpk(t). (15)

The adaptive synaptic weights wk (in analogy
with the PF→PC synapse) are updated using the
heterosynaptic covariance learning rule19 in its con-
tinuous form10 (16) and adjusted by an error signal
(e(t)).

δwk = −βe(t)pk(t), (16)

where β is a small positive learning rate and e(t) is
the error signal.
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In this approach, e(t) is the feedback error signal,
which has three components ep, ev, and ea (posi-
tions, velocities, and accelerations) for each joint. β

is set to 0.005 in all the experiments carried out.
The cerebellum produces [3 × number of joints] posi-
tion, velocity, and acceleration corrections for every
joint arm, which are updated by the corresponding
weight wk.

Summarizing, in the LWPR, all RFs calculate
their weight activation in order to assign the new
input, xi, to the closest RF and consequently,
the center and the kernel width are incrementally
updated during the learning process. The optimized
choice of centers and widths gives the optimal basis
of RFs, so that the accuracy and the learning speed
of the cerebellar model are improved. In other words,
Eq. (14) represents the bank of filters for the GCs
in the cerebellum and they are both used to com-
pute the cerebellar outputs (Qc, Q̇c, Q̈c) as a linear
weighted combination as defined in Eq. (15) and to
update the synaptic weights wk (16).

Finally, the function to be approximated online
by the regression algorithm LWPR during simulation
is shown in Eq. (17):

Φ(u, (Q, Q̇)t−1) = (Q, Q̇, Q̈)t, (17)

where (Q, Q̇)t−1 is the current state and (Q, Q̇, Q̈)t

is the next state of the robot that corresponds to
the efference copy of the motor command u. Further,
implementation details on the approximation process
are given in Sec. 3.

3. Materials and Methods

In order to allow the forward internal model (LWPR)
to learn different context dynamics, we considered
four case-studies when emulating the manipulation
of different objects, in which the manipulated object
was defined as punctual payloads tied to the simu-
lated robot end effector. We have performed exper-
iments with masses of 2, 6, 8, and 10Kg. So, we
have studied how both the adaptive and learning
stages compensate the errors when the simulated
robot arm is following a desired trajectory. This com-
bination allows the simulated robot arm to follow
the desired trajectory under different contexts (i.e.
manipulating different objects). Moreover, we have
also tested the stability of the RAFEL architecture
under kinematic modifications obtained by shifting
the end effector orientation (this aims to emulate the

kinematic changes in the robot arm+object when
manipulating objects such as a pointer). In other
words, we have evaluated the performance of the
RAFEL architecture in adapting to dynamics and
kinematics changes of the controlled object on two
physically realistic models of robotic arms. In the
first setup, the LWR arm was simulated consider-
ing a reduced configuration to 3-DOFs (fixing the
rest of the joints) in order to get fewer input dimen-
sions to the machine learning engine. The three
nonfixed joints (Q1, Q2, Q3) used in our exper-
iments are indicated in Fig. 3. This reduces the
amount of training data required and expedites the
initial learning process. Afterwards, all DOFs avail-
able in the DLR LWR III (up to 7), shown in
Fig. 3, were involved in the simulation (further infor-
mation about the LWR simulated model can be
seen in Appendix B). LWPR learning was carried
out online and the learnt forward internal models
were adapted to changes in dynamics at every time
step.

For both configurations, the gains of the AF
controller have been set to the same value for the
four objects and for all the robot joints (Kp = 6;
Kv = 3; µ = 0.75). Nakanishi and Schaal provided in
Ref. 36 a strictly positive real (SPR) condition, that
is K2

v > Kp, for choosing feedback gains in order to
ensure stability of the feedback error learning mecha-
nism. Our choice of feedback gains satisfies the men-
tioned condition, which implies that the stability of
the RAFEL architecture is guaranteed.

The task for the experiments with the LWR
3-DOF arm was to follow a planned trajectory in

Fig. 3. LWR arm and hand consisting of seven revolute
joints. The three joints used in our 3-DOF experi-
ments are explicitly indicated. Figure adapted from Albu-
Shäffer et al. in Ref. 31.
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a three-dimensional task space defined by (18).

Q1 = A sin(πt), Q2 = A sin(πt + φ),

Q3 = A sin(πt + 2φ),
(18)

where A is a constant (0.1), φ is π/4, and Q1, Q2,
and Q3 are the joint coordinates, respectively.

In the second setup, aiming to scale the move-
ment to a 7-DOF scenario, the arm had to follow
in Cartesian coordinates the trajectory defined by
Eq. (19):

y = 0.15 sin(2t), z = 0.6 + 0.2 cos(t), (19)

remaining variable x constant.
We ran 25 iterations of the above-stated trajec-

tories and trained online the LWPR in every itera-
tion with 500 points for the first 3-DOF setup and
1000 points for the second 7-DOF setup (this corre-
sponds with half of the points of the whole trajectory
in each case). The sampling intervals for the eight-
like trajectories were 2 ms and 1 ms, for 3DOF- and
7DOF-robot configurations, respectively. In all the
cases, the eight-like trajectory lasted 2 s.

With the purpose of highlighting the importance
of the cerebellum in the system and the role of
the forward internal model in making more effective
cerebellar corrections, we have also compared the
performance between the RAFEL architecture with
another system configuration in which the cerebel-
lum module has been removed and also with another
architecture with high-gains PD instead of the AF
controller.

In order to evaluate the functional structure
of the LWPR forward internal model within the
RAFEL architecture and its capability to generalize
among contexts (that can be different conditions,
objects being manipulated, etc.), we have performed
a generalization experiment. We tested the LWPR
capability to provide an optimal basis of RFs to com-
pute the cerebellar corrections under unseen dynamic
contexts. Firstly, the LWPR within the RAFEL
architecture is trained with some dynamic contexts
(2, 6, and 10 kg), secondly, the testing is done with
1, 4, and 8 kg contexts. Furthermore, we tested the
performance of the RAFEL architecture in different
desired trajectories obtained from Eq. (18) by modi-
fying its coefficients. Experimental results show that
the system is able to keep the desired performance
thanks to the synergy between cerebellum and AF
modules.

We have evaluated the system accuracy con-
sidering the performance of the whole iteration of
the planned trajectory: the nMSE in radians (Rad)
between the desired joint angle Qd and the actual
joint angle Q obtained from the simulated robot arm.
The nMSE is defined as the MSE divided by the vari-
ance of the target data values.

All simulations were set up in the MATLAB
(v.R2008a) environment and we used the robotics
toolbox39 for MATLAB. All experiments carried out
for this work and the results obtained are described
in Sec. 4.

4. Experiments and Results

With the 3-DOF simulated robot arm, the LWPR
creates 22 locally linear models (RFs) for 2–6–8–
10 kg contexts. Firstly, we investigated the perfor-
mance of the control architecture by manipulating
four objects (simulated as mass points) at the end
effector of the robot arm. Figure 4 shows the aver-
age of the nMSE over the three joints; different traces
indicate the response to different contexts during 25
trajectory iterations (18). As can be seen, in the three
joints, the error is reduced homogeneously.

Figure 4 proves that the RAFEL architecture is
adaptable to dynamic transformations in the context
of tracing a planned trajectory. In the same way,
the averaged nMSE in Fig. 5 shows no remarkable
variations in its performance under kinematics trans-
formations of the arm tip. We have obtained these
kinematics changes by shifting the orientation of the
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Fig. 4. nMSE averaged over the three joints for four
contexts. For the sake of clarity, error bars are plotted
only for the 6 kg context and indicate the standard devi-
ation between the joints.
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Fig. 5. The lines represent the averaged performance
(nMSE) among the three joints during 25 iterations of
the desired trajectory. For the sake of clarity, error bars,
indicating the standard deviation between the joints, are
plotted only for the 6 kg and π/4 radians context, which
is representative of all the other tested contexts.

end effector by a factor λ = [π/4, π/2] in radians. So,
the architecture robustness is not affected either by
changes in both dynamics or kinematics.

In the previous experiments, the LWPR learnt
the contexts separately. Nevertheless, the LWPR
is capable of learning different forward dynam-
ics internal models and of retaining them in the
same regression model. Figure 6 shows that after
training forward dynamics models corresponding to
the dynamics of the robot arm manipulating three
different payloads (2, 6, and 10kg) at the arm tip, the
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Fig. 6. The RAFEL architecture still shows a good per-
formance when being tested under unseen dynamics con-
texts. This is expressed by the nMSE value plotted in
the figure. Error bars represent the standard deviation
between the three joints.

LWPR was tested (switching off the learning mech-
anisms during the test trials) with three unlearnt
payloads of 1, 4, and 8 kg to study its generaliza-
tion capability to predict the simulated arm behav-
ior under new contexts. The robot was expected to
follow the trajectory (18) in all cases.

In order to highlight the advantages of
the RAFEL architecture and how its different
components complement each other, we examined
and compared how the errors, when following
a desired trajectory (18), became compensated
by using three different architectures. Besides
the RAFEL architecture, we considered a second
approach with the feedback loop (AF), but without
cerebellar corrections (thicker solid line in Fig. 8),
and a third one consisting of block C and a high-gain
PD instead of the AF controller. These two architec-
tures are drawn in Fig. 7.

In order to guarantee a low error when following
a desired trajectory, the system with a PD controller
used the gains of the RAFEL architecture multiplied
by a factor of 500. But even with this change, the
thin solid line in Fig. 8 shows that the final behav-
ior is not stable and the maximum torque applied
at joints is 758 Nm, which is a potential risk in case
of physical contact of the robot arm with the envi-
ronment.40 Figure 8 shows that the RAFEL scheme
achieved a better performance even with a maximum
torque of around 200 Nm. The influence of mass and
velocity of the DLR LWRIII in resulting injuries on
human bodies was studied by Haddadin et al. in
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Fig. 8. Performance comparison of three control archi-
tectures (see Fig. 7) when a simulated robot arm is
manipulating a 6 kg object. Lines display the nMSE aver-
aged over three joints, error bars indicate the standard
deviation between the joints. The case of a PD with low
gains is not plotted because it leads to a very bad per-
formance (which lays out of range in this plot).

Table 1. Coefficients of the tested trajectories.

A φ

Traj. 1 0.1 π/4
Traj. 2 0.1 π/2
Traj. 3 0.05 π/4
Traj. 4 Traj. 1 + Traj. 3
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Fig. 9. The RAFEL architecture shows a good perfor-
mance during the test stage with new trajectories whose
coefficients are defined in Table 1. The robot arm manip-
ulated a 6 kg load. The line indicates the mean nMSE
value, averaged over three joints firstly for each trajec-
tory and then, over the four trajectories. Error bars rep-
resent the standard deviation above and below the mean
of the nMSE of the four trajectories.

Ref. 40. In these tests, it becomes clear that arbitrary
masses moving at speeds below 2m/s were not able
to become dangerous to a nonclamped human head.
Furthermore, they indicated that the inertia prop-
erties of the LWRIII allow impact velocities of up
to 1m/s without leading to soft-tissue injuries. With
regard to our system, the maximum linear velocity
obtained during the self-adaptive experiment for the
3-DOF LWR arm manipulating 10 kg load at the last
joint is 0.81m/s; therefore, it can be seen as a com-
pliant approach. This result has been computed con-
sidering the worst case, i.e. the longest link and the
maximum angular velocity.

We also tested other trajectories obtained from
Eq. (18) by changing the phase or the amplitude or
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Fig. 10. The eight-like figure-shapes obtained after 25
iterations for the four precomputed trajectories (they are
accurately approximating the desired trajectories).
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Fig. 11. The RAFEL architecture scales with a good
performance using a simulated robot arm of 7-DOFs
when its dynamics are modified by manipulating different
payloads.
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Fig. 12. The RAFEL architecture also scales to 7-
DOFs with a good performance under kinematics
transformations.
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Fig. 13. Lines represent the nMSE averaged over 7
joints after having been averaged over the four dynamic
contexts (2, 6, 8, and 10 kg). The solid black line shows
the tracking error performance obtained by removing the
cerebellar block in the RAFEL scheme. Comparing them,
it becomes clear that the cerebellum drives the system to
achieve a better performance in terms of nMSE with a
small deviation among joints. Error bars represent the
standard deviation above and below the mean of the
nMSE of the seven joints.

summing both of them. For these experiments, we
composed four trajectories with the coefficients indi-
cated in Table 1. During the experiments, half of the
points along each trajectory have been used for learn-
ing and the other half, for testing. The performance
results of tracking these trajectories when manipu-
lating a 6 kg payload are shown in Fig. 9 and their
eight-like figure-shapes are plotted in Fig. 10, which
corresponds to the final iteration number 25.

The RAFEL architecture has been also tested
with a higher number of DOFs and results in Figs. 11
and 12 indicate that the system’s behavior becomes
stable after a few iterations of the desired trajec-
tory (19). The LWPR creates 25 locally linear mod-
els (RFs) for each learnt context. Aiming to highlight
the important role of the cerebellum in driving all the
joints to converge at a similar nMSE error value, we
compared the performance of the RAFEL architec-
ture with a similar one without the C block applying
sensory corrections to the desired trajectory. Results
are shown in Fig. 13.

5. Conclusions

In this paper, we have proposed an adaptive and
predictive control architecture based on different ele-
ments: a cerebellar module (C) which provides cor-
rective terms (in position, velocity, and acceleration
corrections), a machine learning module (LWPR)
which incrementally acquires an optimized repre-
sentation of the input sensory-motor space (this is
then used as input to the cerebellar module), and an
adaptive AF module which translates position, veloc-
ity, and acceleration into actual torque values but
using low gains. The combination of these different
elements on the same architecture delivers a com-
pliant control in a simulated robot arm in manipula-
tion tasks. In the performed experiments, it is shown
that the manipulated objects effectively affected
the dynamics or kinematics of the robot+object
model; however, the proposed approach provided a
compliant control (using low torque values) with
high accuracy since the internal models were effi-
ciently adapted towards compensating the mismatch
between the base model (only robot arm) and the
modifications in each context (robot+object under
manipulation). Furthermore, the RAFEL architec-
ture leads the joints to quickly converge to a small
position error taking advantages of the LWPR’s
capability to retain and generalize different dynamics
and kinematics contexts.

In the proposed scheme, the input layer of the
cerebellum model was abstracted efficiently by using
the LWPR internal kernels. The experiments done
in this study also show how an efficient and continu-
ously adapting input sensory-motor space represen-
tation can efficiently be used by a simple integrative
neural layer (PCs) in the framework of a recurrent
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control loop. The importance of an efficient and clean
contribution to the Purkinje layer has been recently
evaluated41,42 and other authors, such as Porrill and
Dean in Ref. 10 and Schweighofer et al. in Ref. 43
hypothesized that the cerebellar learning is facili-
tated by optimizing the choice of the centers and the
basis of RFs at the granular layer. We have also illus-
trated the complementary role of the LWPR and the
cerebellar modules with specific experiments. Here,
the RAFEL architecture was compared with other
approaches in which the cerebellar module or the
LWPR modules had been removed and substituted
by other components such as high-gain PD.

The proposed scheme is based on error estimates
in the sensory space (position, velocity, and acceler-
ation). This recurrent loop avoids dealing with the
distal error problem and provides an efficient motor
control.

As future work, we suggest studying the exploita-
tion of the learnt forward internal models to provide
an estimate of the outcome of a motor command.
Then, we could combine the recurrent control loop
for compensating deviations in the trajectory and
forward model predictions.
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Appendix A

Substituting the Laplace transform of Eq. (9) in the
Laplace transform of Eq. (10), we obtain Eq. (A.1):

B̂i(r+1)(s) = B̂ir(s) + Ω(s)H(s)

× [Bi(s) − B̂ir(s)], (A.1)

Table B.1. Inertia tensor parameters (kg · m2).

Joint j xxj xyj xzj yyj yzj zzj

Joint j = 1 0.0216417 0.0 0.0 0.0214810 0.0022034 0.0049639
Joint j = 2 0.0244442 0.0 0.0 0.0052508 0.0036944 0.0239951
Joint j = 3 0.0213026 0.0 0.0 0.0210353 0.0022204 0.0046970
Joint j = 4 0.0231668 0.0 0.0 0.0048331 0.0034937 0.0227509
Joint j = 5 0.0081391 0.0 0.0 0.0075015 0.0021299 0.0030151
Joint j = 6 0.0033636 0.0 0.0 0.0029876 0.0 0.0029705
Joint j = 7 0.0000793 0.0 0.0 0.0000783 0.0 0.0001203

where

H(s) =
1

s2 + Kvi(s) + Kpi
. (A.2)

By substituting expression (A.3) in Eq. (A.1) we
obtain Eq. (A.4):

Γ(s) = 1 − Ω(s)H(s), (A.3)

B̂i(r+1)(s) = Γ(s)B̂ir(s) + Bi(s)[1 − Γ(s)]. (A.4)

Starting with B̂i0, after r iterations we get Eq. (A.5):

B̂ir(s) = Bi(s) + AΓr(s), (A.5)

where A is a constant.
The convergence of the learning algorithm

depends on factor Γr(s) in Eq. (A.5) and will occur if
Γr(s) approaches zero. In this case, B̂i(r)(s) → Bi(s),
and Eq. (8) will be true with its right side equal to
zero.

The inverse Laplace transform of Γr(s) is defined
by Eq. (A.6).

γr(t) = L−1[Γr(s)]. (A.6)

It has been demonstrated in Ref. 44 that choosing
an appropriate filter Ω(s) as the one in Eq. (11), we
would obtain

lim
r→∞ |gr(t)| = 0, (A.7)

with which it is possible to guarantee the con-
vergence. As indicated in the main text, we have
chosen a filter Ω(s) that fulfills this convergence
condition.

Appendix B

The approximate dynamic equation defining the
LWR robot is given by the expression:

u = M(Q)Q̈ + V (Q, Q̇) + G(Q), (B.1)
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Table B.2. Center of mass, and motor inertia (Units: m, kg, and
kg · m2).

Joint j mxj myj mzj mj Imj

Joint j = 1 0.0 0.01698 −0.05913 2.7082 415.50e-6
Joint j = 2 0.0 0.11090 0.01410 2.7100 415.50e-6
Joint j = 3 0.0 −0.01628 −0.06621 2.5374 361.60e-6
Joint j = 4 0.0 −0.10538 0.01525 2.5052 138.50e-6
Joint j = 5 0.0 0.01566 −0.12511 1.3028 54.10e-6
Joint j = 6 0.0 0.00283 −0.00228 1.5686 60.08-6
Joint j = 7 0.0 0.0 0.06031 0.1943 60.08e-6

Table B.3. Friction parameter values: Dry friction and Vis-
cous friction (units: N · m and N · m · s/rad).

Joint j ±Fd(Q, Q̇) Fv(Q, Q̇)

Joint j = 1 ±0.35 2.0e-3
Joint j = 2 ±0.35 1.698e-3
Joint j = 3 ±0.35 1.660e-3
Joint j = 4 ±0.35 2.400e-3
Joint j = 5 ±0.35 1.800e-3
Joint j = 6 ±0.35 1.200e-3
Joint j = 7 ±0.35 1.200e-3

where u is the applied torque, M(Q) is the inertia
matrix (symmetric positive definite matrix), V (Q, Q̇)
is the Coriolis and centrifugal force matrix, and
finally, G(Q) is the gravitational force vector. The
position in joint coordinates is given by Q, the joint
velocity by Q̇, and the joint acceleration by Q̈. Both
dry friction and viscous friction forces are added to
the previous equation (B.1) obtaining:

u = M(Q)Q̈ + V (Q, Q̇) + G(Q) + Fd(Q, Q̇)

±Fv(Q, Q̇), (B.2)

where Fd(Q, Q̇) and Fv(Q, Q̇) are the modeled
dry/viscous friction matrices.

The first three terms of Eq. (B.2) mainly include
the inherent robot dynamic parameters (inertia
matrix, Coriolis matrix, and gravitational force vec-
tor). These parameters are up to 11 per joint (inertia
matrix is symmetrical):

(1) Inertia tensor terms (xxj , xyj , xzj , yyj , yzj, zzj

where j = {1, 2, . . . number of joints})
(2) Center of mass (mxj , myj, mzj where j =

{1, 2, . . . number of joints})
(3) Mass (mj where j = {1, 2, . . . number of joints})

(4) Motor inertia (Imj where j = {1, 2, . . . number
of joints})

These parameters are usually grouped accord-
ing to these four categories, needing to make
the computational task easier.45 The length of
the three links that constitute the robot arm
is L = {0.310, 0.4 and 0.390 m}. For our particu-
lar simulated LWR robot,31 the nominal values
obtained applying parametric methods46 are shown
in Tables B.1–B.3.
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mechatronics approach to the design of light-weight
arms and multifingered hands, in Proc. ICRA (2000),
pp. 46–54.
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