Musculoskeletal Robots. Scalability in Neural Control

Abstract

Anthropomimetic robots sense, behave, interact, and feel like humans. By this definition, they require human-like physical hardware and actuation but also brain-like control and sensing. The most self-evident realization to meet those requirements would be a human-like musculoskeletal robot with a brain-like neural controller. While both musculoskeletal robotic hardware and neural control software have existed for decades, a scalable approach that could be used to build and control an anthropomimetic human-scale robot has not yet been demonstrated. Combining Myorobotics, a framework for musculoskeletal robot development, with SpiNNaker, a neuromorphic computing platform, we present the proof of principle of a system that can scale to dozens of neurally controlled, physically compliant joints. At its core, it implements a closed-loop cerebellar model that provides real-time, low-level, neural control at minimal power consumption and maximal extensibility. Higher-order (e.g., cortical) neural networks and neuromorphic sensors like silicon retinae or cochleae can be incorporated.

Publication
IEEE Robotics and Automation Magazine
Jesús Garrido
Jesús Garrido
Associate Professor

Associate professor in Computation technology, senior researcher at the Computational Neuroscience and Neurorobotics Lab and principal investigator of the VALERIA lab of the University of Granada.

Eduardo Ros
Eduardo Ros
Full Professor

Full professor in computer architecture, principal investigator at the Computational Neuroscience and Neurorobotics Lab and principal investigator of the VALERIA lab of the University of Granada.