A cerebellar-based solution to the nondeterministic time delay problem in robotic control

Abstract

The presence of computation and transmission-variable time delays within a robotic control loop is a major cause of instability, hindering safe human-robot interaction (HRI) under these circumstances. Classical control theory has been adapted to counteract the presence of such variable delays; however, the solutions provided to date cannot cope with HRI robotics inherent features. The highly nonlinear dynamics of HRI cobots (robots intended for human interaction in collaborative tasks), together with the growing use of flexible joints and elastic materials providing passive compliance, prevent traditional control solutions from being applied. Conversely, human motor control natively deals with low power actuators, nonlinear dynamics, and variable transmission time delays. The cerebellum, pivotal to human motor control, is able to predict motor commands by correlating current and past sensorimotor signals, and to ultimately compensate for the existing sensorimotor human delay (tens of milliseconds). This work aims at bridging those inherent features of cerebellar motor control and current robotic challenges—namely, compliant control in the presence of variable sensorimotor delays. We implement a cerebellar-like spiking neural network (SNN) controller that is adaptive, compliant, and robust to variable sensorimotor delays by replicating the cerebellar mechanisms that embrace the presence of biological delays and allow motor learning and adaptation.

Publication
Science Robotics
Ignacio Abadia
Ignacio Abadia
Postdoctoral Researcher

Postdoctoral Researcher at the Applied Computational Neuroscience Research Group at the University of Granada.

Francisco Naveros
Francisco Naveros
Postdoctoral Researcher

Senior postdoc at the Applied Computational Neuroscience Research Group at the University of Granada.

Eduardo Ros
Eduardo Ros
Full Professor

Full professor in computer architecture, principal investigator at the Computational Neuroscience and Neurorobotics Lab and principal investigator of the VALERIA lab of the University of Granada.

Ríchard R. Carrillo
Ríchard R. Carrillo
Assistant Professor

Associate Professor at the Department of Computer Engineering, Automation and Robotics and Principal Investigator at the Applied Computational Neuroscience Group.

Niceto Luque
Niceto Luque
Associate Professor

Associate Professor at the Department of Computer Engineering, Automation and Robotics and Principal Investigator at the Applied Computational Neuroscience Group.